Loading...

Response of carbon sources and their various concentrations on in vitro rooting of banana cv. Chinichampa (AAB) through shoot tip ​


DOI: 10.31830/2454-1761.2024.CR-952    | Article Id: CR-952 | Page : 41-46
Citation :- Response of carbon sources and their various concentrations on in vitro rooting of banana cv. Chinichampa (AAB) through shoot tip​. Crop Res. 59: 41-46
S. KIKATEMJEN OZUKUM, C.S. MAITI, PANKAJ SHAH, PAULINE ALILA, A. SARKAR, L. HEMANTA AND KHAMRANG MATHUKMI mkhamrang.agri13@gmail.com
Address : Department of Horticulture, School of Agricultural Sciences, Medziphema Campus-797106, Nagaland University, India
Submitted Date : 15-12-2023
Accepted Date : 22-01-2024

Abstract

In vitro propagated banana plants are steadily becoming the planting material of choice because of disease free, uniformity and the possibility of rapid multiplication. The present investigation was carried out at the tissue culture laboratory, Department of Horticulture, School of Agricultural Sciences, Nagaland University, Medziphema campus during the year 2019-2022. Data recorded for different parameters viz. days to greening, days required for multiple buds’ initiation, number of multiple buds produced per explant and length of multiple buds after 30 days were subjected to completely randomized design (CRD). The present study revealed the importance of various carbon sources and their role in micropropagation of banana through shoot tip culture. The minimum days required for root initiation were observed in root induction media (RIM) supplemented with 30g glucose. Rooting percentage (%), number of roots per shoot and length of longest roots (cm) after 30 days was seen in RIM supplemented with table sugar at 40g, 30g and 20g respectively. Meanwhile maximum average length of shoot (cm) after 30 days was observed in RIM supplemented with 40g glucose and highest number of leaves per plantlets was recorded in RIM supplemented with 30g sucrose. The results indicate the significance of carbon sources in micropropagation of banana. They improved plant regeneration and facilitated rapid multiplication of disease and virus free banana plantlets.

Keywords

Banana carbon sources micropropagation rooting 


References

Abdullah, G. R., Al-Khateeb, A. A. and Layous, L. N. (2013). Response of the strawberry cv. “Elsanta” micro propagation in vitro to different carbon sources and concentrations. Jordan J. Agric. Sci. 9: 1-10. doi:10.12816/0001086.
Aminisarteshnizi, M. (2023). Phylogenetic position of Pratylenchus vulnus species (Nematoda: Pratylenchidae) associated with banana using mtDNA (cox1 region) from South Africa. Res. Crop. 24: 326-29.
Agrawal, A., Sanayaima, R., Tandon, R. and Tyagi, R. K. (2010). Cost-effective in vitro conservation of banana using alternatives of gelling agent (isabgol) and carbon source (market sugar). Acta Physiol. Plant. 32: 703-11.
Ahmed, S., Sharma, A., Singh, A. K., Wali, V. K. and Kumari, P. (2014). In vitro multiplication of banana (Musa sp.) cv. Grand Naine. Afr. J. Biotechno. 13: 2696-703. doi:10.5897/ajb2014.13750.
Chen, Y., Lin, S., Dujuid, S., Dribnenki, P. and Kenasehuk, E. (2003). Effect of sucrose concentration on elongation of shoots from flax anther cultures. Plant Cell, Tissue Organ Cult. 72: 181-83. doi:10.1023/A:10822208125478.
Cronauer-Mitra, S. S. and Krikorian, A. D. (1984). Multiplication of Musa from excised stem tips. Ann. Bot. 53: 321-28. doi: org/10.1093/oxfordjournals.aob.a086696.
Cuenca, B. and Vietiez, A. M. (2000). Influence of carbon source on shoot multiplication and adventitious bud regeneration in in vitro beech culture. Plant Growth Regul. 32: 1-12. doi:10.1023/A:1006329510280.
Das, A. and Gupta, S. N. (2009). Use of low-cost resources for banana micropropagation. Indian J. Hortic. 66: 295-300.
ginger (Zingiber officinale). Indian J. Agric. Sci. 65: 506-08.
Hossain, M. J., Bari, M. A., Ara, N. A. and Islam, S. M. S. (2009). Effect of carbon sources on cell growth and regeneration ability in three cultivars of banana. J. Bio. Sci. 17: 83-88.
Hsiao, C. N. and Korban, S. S. (1996). Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell, Tissue Organ Cult. 44:1-6. doi:10.1007/BF00045906.
Huh, Y. S., Lee, J. K., Nam, S. Y., Hong, E. Y., Paek, K. Y. and Son, S. W. (2016). Effects of altering medium strength and sucrose concentration on in vitro germination and seedling growth of Cypripedium macranthos. Sw. J. Plant Biotechnol. 43: 132-37.
Hussein, N. (2012). Effect of nutrient media constituents on growth and development of banana (Musa spp.) shoot tip cultured in vitro. Afr. J. Biotechnol. 11: 9001-06. doi:10.5897/ AJB11.4173.
Ilczuk, A., Jagiełło-Kubiec, K. and Jacygrad, E. (2013). The effect of carbon source in culture medium of micropropagation of common ninebark (Physocarpus opulifolius  (L.) Maxim.) ‘Diable D’ or’. Acta Sci. Pol. Hortorum Cultus 12: 23-33.
Jasik, J. and De Klerk, G. J. (1997). Anatomical and ultra-structural examination of adventitious root formation in stem slices of apple. Plant Biol. 39: 79-90. doi: 10.1023 /A:1000313207486.
Joshi, P., Trivedi, R. and Purohit, S. D. (2009). Micropropagation of Wrightia tomentosa: Effect of gelling agents, carbon sources and vessel type. Indian J. Biotechnol. 8: 115-20.
Kadota, M. and Niimi, Y. (2004). Influence of carbon sources and their concentrations on shoot proliferation and rooting of ‘Hosui’ Japanese pear. Hort. Sci. 39: 1681-83. doi: 10.21273/HORTSCI.39.7.1681.
Kaur, R., Gautam, H. and Sharma, D. R. (2005). A low-cost strategy for micropropagation of    
Kodym, A. and Zapata-Arias, F. J. (2001). Low- cost alternative for the micropropagation of banana. Plant Cell, Tissue Organ Cult. 66: 67-71. doi:10.1023/A:1010661521438.
Mehta, A. R. (1980). Physiological aspects of organ differentiation in vitro. In: Proceedings of
Memon, A. A., Ali, R., Shahnawaz, P., Xiang, W. and Xu, W. (2019). Effect of carbon sources and their various concentrations for optimize in In vitro micro propagation of banana Musa (spp.) Basrai. Int. J. Environ. Agric. Biotechnol. 4: 1108-12. doi:10.22161/ ijeab.4434.
Neog, P. P. (2021). Community analysis of plant parasitic nematodes associated with banana (Musa Spp.) cultivation in north bank plain agro-climatic zone of Assam. Crop Res. 56: 20-22.
Pierik, R. L. M. (1997). In vitro culture of higher plants. Springer Dordrecht. Pp 60-62.
Prabhakara, H. L. (1999). Studies on in vitro propagation of Anthurium andreanum Lind. M. Sc. (Ag.) Thesis, University of Agricultural Sciences, Dharwad, Karnataka, India. Pp. 105-13.
Prabhuling, G. and Sathyanarayana, B. N. (2017). Cheaper carbon sources for micropropagation of banana cv. Grande Naine. Int. J. Agric. Sci. 13: 124-31. doi:10. 15740/HAS/IJAS/13.1/124-131.
Raghu, A. V., Martin, G., Priya, V., Geetha, S. P. and Balachandran, I. (2007). Low-cost alternatives for the micropropagation of Centella asiatica. J. Plant Sci. 2: 592-99.           doi: 10.3923/jps.2007.592.599.
Romano, A., Noronha, C. and Martins-Loucao, M. A. (1995). Role of carbohydrate in micropropagation of cork oak. Plant Cell, Tissue Organ Cult. 40: 159-62. doi: 10.1007/BF00037670.
Saeed, B. A. (2006). In vitro selection and evaluation of the genetic purity of regenerated banana plants. Ph. D. Thesis, University of Karachi, Karachi, Pakistan. Pp. 187-96.
Sagi, L., Gregory, D. M., Remy, S. and Swennen, R. (1998). Recent developments in biotechnological research on bananas (Musa spp.). Biotechnol. Genet. Rev. 15: 313-17. doi:10.1080/02648725.1998.10647960.
Sharma, T. R. and Singh, B. M. (1995). Simple and cost effective medium for propagation of
Sivanesan, I. and Murugesan, K. (2008). An efficient regeneration from nodal explants of Withania somnifera Dunal. Asian J. Plant Sci. 7: 551-56.
            strawberry (Fragaria X ananassa Duch.). Acta Hortic. 696: 129-33.
Sudipta, K. M., Kumara, S. M. and Anuradha, M. (2013). Influence of various carbon sources and organic additives on in vitro growth and morphogenesis of Leptadenia reticulate (Wight & Arn), a valuable medicinal plant of India. Int. J. Pharm. Sci. Rev. Res. 21: 174-79.
Sul, I. W. and Korban, S. S. (1998). Effects of media, carbon sources and cytokinnins on shoot organogenesis in Christmas tree Pinus sylvestris L. J. Hort. Sci. Biotechnol. 73: 822-27. doi:10.1080/14620316.1998.11511054.
Swetha, P. V. N. and Srinivas, B. (2016). Role of different carbon sources on in vitro micropropagation of Oxalis Corniculata (L.). Int. J. of Pharm. Biol. Sci. 6: 98-104
the National Symposium on plant tissue culture, genetic manipulation and somatic hybridization of plant cells, BARC, Bombay. Pp.  27-29.
Thompson, M. and Thorpe, T. (1987). Metabolic and non-metabolic roles of carbohydrates. In: Cell and Tissue Culture in Forestry, Martinus Nijhoff, Dordrecht, Pp. 89-112.
Thorpe, T. A. and Murashige, T. (1968). Starch accumulation in shoot forming tobacco callus cultures. Science 160: 421-22. doi:10.1126/science.160.3826.421.
Tyagi, R. K., Agrawal, A., Mahalakshmi, C., Hussain, Z. and Tyagi, H. (2007). Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cell Devel. Biol. - Plant. 43: 51-58. doi:10.1007/s11627-006-9000-y.
Waman, A. A. and Bohra, P. (2018). Factors governing success in shoot tip culture of bananas with special reference to mixed genomic groups: an Overview. Erwerbs-Obstbau.       61: 9-21. doi:10.1007/s10341-818-0391-9.
Yaseen, M., Ahmad, T., Sablok, G., Standardi, A. and Hafiz, I. A. (2013). Review: role of carbon sources for in vitro plant growth and development. Mol. Biol. Rep. 40: 2834-49. doi: 10.1007/s11033-012-2299-z.
Zakaria, F. and Chng, H. Y. 92020). Assessment of soil carbon accumulation during different growth stages of banana after land conversion from a secondary forest. Res. Crop. 21: 276-83.

Global Footprints