Loading...

Heavy metal contamination through wastewater irrigation on the soil and vegetables: Impact on the nutrient content and health risks ​


DOI: 10.31830/2454-1761.2024.CR-944    | Article Id: CR-944 | Page : 52-59
Citation :- Heavy metal contamination through wastewater irrigation on the soil and vegetables: Impact on the nutrient content and health risks​. Crop Res. 59: 52-59
RASHMI SINGH, SHIVANI GUPTA, ALOK KUMAR KHARE AND SUPRIYA TIWARI rashmisinghum86@gmail.com
Address : Department of Botany, Bareilly College Bareilly, Mahatma Jyotiba Phule Rohilkhand University, Bareilly-243001, Uttar Pradesh, India
Submitted Date : 13-11-2023
Accepted Date : 25-12-2023

Abstract

The use of wastewater irrigation may contribute to the metal accumulation, and reduction of nutrient level of vegetables, which would then have an adverse effect on human health. Therefore, in the present study we investigated heavy metals contamination and its impact on nutrient quality of vegetables and health risk. The study was conducted from the agricultural fields of Varanasi distinct during the period from March 2022 to June 2023 and all the laboratory work was carried in the department of Botany, Banaras Hindu University. Heavy metal concentrations in water, soil, and vegetable samples were measured using an atomic absorption spectrophotometer. The physiochemical property (pH), daily intake of metal, metal pollution index and health quotient were also calculated according to the published protocols. All heavy metal were found in higher concentrations in the wastewater irrigated soil that control site. The Lohta site had the highest concentration of heavy metals in the vegetables, followed by Dinapur, and least at control site (BHU). The highest concentration of metals (Cu, Zn, and Pb) were found in the leafy vegetables (S. oleracea & A. esculentus) whereas lowest in fruity vegetables (P. vulgaris). The rise in the Metal Pollution Index (MPI) also provided evidence for the greater metal content of these vegetables. The S. oleracea was found to have the highest DIM (0.061 g/g) while P. vulgaris had the lowest (0.007 g/g). HQ values of these metals were found greater than one (>1) for both children and adults on the ingestion of the vegetables of wastewater irrigated sites. Further, nutrient contents (Na, Mg, Ca) were also declined in the vegetables of wastewater irrigated site when compared to control site. These findings suggest that the consumption of such vegetables leads to compromised health and might be associated with severe health risk in the human.

Keywords

Health risk heavy metal soil vegetables wastewater 


References

Bhardwaj, R., Yadav, S. P., Singh, R. K. and Tripathi, V. K. (2020). Crop growth under heavy metals stress and its mitigation. New frontiers in stress management for durable agriculture. Springer Singapore. pp. 169-83.
Bhattacharjya, D. K., Md Shamsuzzaman, Anupoma Sen, Abdullah Hel Mafi, Akhter Jahan Kakon, Manna Salwa and Md. Mahfuzur Rob (2023). Evaluation of the nutritive value and metal content of prevalent edible mushrooms in Bangladesh. Res. Crop. 24: 536-43.
Blanca, J. and Inés, N. (2013). Wastewater use in agriculture: public health considerations. In book: Encyclopedia of Environmental Management. Editor: Jorgensen, S. CRC Press Taylor and Francis. doi:10.1081/ E-EEM-120046689.
Dheri, G. S., Brar, M. S. and Malhi, S. S. (2007). Heavy metal concentration of sewage contaminated water and its impact on underground water, soil and crop plants in alluvial soils of North-Western India. Commun. Soil Sci. Plant Anal. 38: 1353–70. doi:10.1080/ 00103620701328743.
Diagomanolin, V. M., Farhang, M., Ghazi-Khansari and Jafarzadeh, N. (2004). Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran. Toxicol. Lett. 151: 63-68. doi:10.1016/J. TOXLET. 2004.02.018.
Fusconi, A., Repetto, O., Bona, E., Massa, N., Gallo, C., Dumas-Gaudot, E. and Berta, G. (2006). Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environ. Exp. Bot. 58: 253-60. doi:10.1016/j.envexpbot.2005.09.008.
Guadie, A. A., Yesigat, A., Gatew, S., Worku, A., Liu, W., Ajibade. F.O. and Wang, A. (2020). Evaluating the health risks of heavy metals from vegetables grown on soil irrigated with untreated and treated wastewater in Arba Minch, Ethiopia. Sci. Total Environ. 761: doi:10.1016/j.scitotenv. 2020.143302.
Gupta, N., Yadav, K. K., Kumar, V., Krishnan, S., Kumar, S., Nejad, Z. D., Khan, M. A. M. and Alam, J. (2021). Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. Environ. Toxicol. Pharmacol. 82: doi:10.1016/j.etap.2020.103563.
Gupta, N., Yadav, K. K., Kumar, V., Kumar, S., Chadd, R. P. and Kumar, A. (2019). Trace elements in soil-vegetables interface: translocation, bioaccumulation, toxicity and amelioration-A review. Sci. Total Environ. 651: 2927-42. doi:10.1016/j.scitotenv.2018.10.047.
Gupta, N., Yadav, K. K., Kumar, V., Prasad, S., Cabral-Pinto M. M. S., Jeon, B-H., Kumar, S., Abdellattif, M. H. and Alsukaibia, A. K. D. (2022). Investigation of heavy metal accumulation in vegetables and health risk to humans from their consumption. Front. Environ. Sci. 10: doi:10. 3389/fenvs.2022.791052.
Heiner, B., Angela., B., Bub, A., Ellinger, S., Haller, D., Kroke, A., Leschik-Bonnet, E., Muller, M. J., Oberritter, H., Schulze, M. and Stehle, P. (2012). Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 51: 637-63. doi:10.1007/s00394-012-0380-y.
Javid, M., Sharma, M. and Khursheed Ahmad, W. (2018). Heavy metals in vegetables and their impact on the nutrient quality of vegetables: A review. J. Plant Nutr. 41: 1744-63. doi:10.1080/01904167.2018.1462382.
Jimoh, F. O. and Oladiji, A. T. (2005). Preliminary studies on Piliostigma thonningii seeds: Proximate analysis, mineral composition and phytochemical screening. Afr. J. Biotechnol.  4: 1439-42.
Jones, E. R., Van V., Qadir T. H., M. and Bierkens, M. F. (2021) Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci Data. 13: 237-54. doi:10.5194/essd-13-237-2021.
Khan, Z. I., Ahmad, K., Yasmeen, S., Akram, N. A., Ashraf, M. and Mehmood, N. (2017). Potential health risk assessment of potato (Solanum tuberosum L.) grown on metal contaminated soils in the central zone of Punjab, Pakistan. Chemosphere 166:157-62. doi:10.1016/j.chemosphere.2016.09.064.
Kumar, A. and Seema (2016). Accumulation of heavy metals in soil and green leafy vegetables, irrigated with wastewater, J. Environ. Sci. Toxicol. Food Technol. 10: 08-19. doi:10.9790/2402-1010020819.
Kumar, J., Haldar, C. and Verma, R. (2019). Fluoride compromises testicular redox sensor, gap junction protein, and metabolic status: Amelioration by melatonin. Biol. Trace Elem. Res. 196: 552-64. doi:10.1007/s12011-019-01946-6.
Kumar, J., Verma, R. and Haldar, C. (2021). Melatonin ameliorates Bisphenol S induced testicular damages by modulating Nrf-2/HO-1 and SIRT-1/FOXO-1 expressions. Environ. Toxicol. 36: 396-407. doi:10.1002/tox.23045.
Kuo, C. Y., Wong, R. H., Lin, J. Y., Lai, J. C. and Lee, H. (2006). Accumulation of chromium and nickel metals in lung tumors from lung cancer patients in Taiwan. J. Toxicol. Environ. Health 69: 1337–44.
Manwani, S., Vanisree C. R., Jamen, V., Awasthi, K., Yadav, C., Singh S., Mahipal Pandit., Awasthi, P. and Garima (2022). Heavy metal contamination in vegetables and their toxic effects on human health. sustainable crop production, Book Chapter. doi:10.5772/intechopen.102651.
Manzoor, D., Sharma, M. and Khursheed, W. (2018). Heavy metals in vegetables and their impact on the nutrient quality of vegetables: A review. J. Plant Nutr. 41: 1-20. doi:10.1080/01904167.2018.1462382.
Marreiro, D. D., Cruz, K. J., Morais, J. B., Beserra, J. B., Severo, J. S. and Oliveira, A. R. (2017). Zinc and oxidative stress: Current mechanisms. Antioxidants (Basel). 6: doi:10.3390/antiox6020024.
Maslennikov, P. V., Chupakhina, G. N., Skrypnik, L. N., Feduraev, P. V. and Melnik, A. S. (2018). Assessment of the antioxidant potential of plants in urban ecosystems under conditions of anthropogenic pollution of soils. Russ. J. Ecol. 49: 384-84. doi:10.1134/S1067413618050065.
Mervat Z. Elliethy, Abdel Aziz M. Ragab, Ramadan I. Bedair and Om Mohamed and A. Khafagi (2022). Assessment of nutrients and heavy metals content in soil and some vegetables cultivated in agricultural land around El-Khashab canal (Helwan-El Saff area). Int. J. Theor. Appl. Res.1: 27-37. doi:10.21608/IJTAR.2022.140827.1006.
Murtaja, K., Linkon, M. R., Mohammed M., Jabin, S., Abedin N., Islam, M., Lisa, L. and Paul, D. (2015). Mineral and heavy metal contents of some vegetable available in local market of Dhaka city in Bangladesh. J. Environ. Sci. Toxicol. Food Technol. 9: doi:10.9790/2402-09510106.
Nath, K., Saini, S. and Sharma, Y. K., (2005). Chromium in tannery industry effluent and its effect on plant metabolism and growth. J. Environ. Biol. 26: 197-204.                        
Sandalio, L. M., Dalurzo, H. C., Gómez, M., Romero-Puertas, M. C. and Río, L. A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52: 2115-26. doi:10.1093/jexbot/52.364.2115.
Sharma, R. K., Agrawal, M. and Marshall, F. M. (2007) Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi, Environ. Poll. 154: 254-63. doi:10.1016/j.envpol.2007.10.010.
Singh, P. K., Yadav, J. S., Kumar, I., Kumar, U. and Sharma, R.K., (2022). Carpet industry irrigational sources risk assessment: Heavy metal contaminated vegetables and cereal crops in northern India. Toxicol. Rep. 19: 1906-19.

Global Footprints