In silico and in vitro biopesticidal activity of Melia dubia (Cav.) plant leaves extract phytocompounds against selected enzymes, proteins, cell lines and Callosobruchus maculatus (Fab.)

DOI: 10.31830/2454-1761.2024.CR-939    | Article Id: CR-939 | Page : 70-78
Citation :- In silico and in vitro biopesticidal activity of Melia dubia (Cav.) plant leaves extract phytocompounds against selected enzymes, proteins, cell lines and Callosobruchus maculatus (Fab.). Crop Res. 59: 70-78
Address : PG and Research Department of Zoology, PMT College, Melaneelithanallur-627637, Tamil Nadu, India (Affiliated to M. Sundaranar University), Tirunelveli-627012, Tamil Nadu, India
Submitted Date : 2-11-2023
Accepted Date : 28-12-2023


Most synthetic pesticides have negative impacts on both human health and the environment, which has led to a global economic and ecological emergency for insect pest control. Crude extracts of phytocompounds from Melia dubia Cav. were tested for their pesticidal effects on a certain enzyme cell line. An in silico molecular docking analysis of phytocompounds showed that the enzymes Glutathione S-Transferase (7RKA), Mytocontrial (5H3F), Acetylcholinesterase (7QAK), GABA receptor (7WGT), and DNA nucleotidylexotransferase (6GO4) interacted strongly with the phytocompounds. Compared to Dichlorvos and Malathion, the substances Guanosine (1) and Medroxyprogesterone (2) showed higher in-silico biopesticidal efficacy against Callosobruchus maculatus (Fab.). A silica gel column chromatographic technique was used to isolate Compounds 1 and 2. In vitro studies revealed that, after 96 hours, Guanosine (90.4% & LC50 value 5.63 mg/ml) caused the maximum toxicity of C. maculatus compared to the reference pesticides Dichlorvos (84.6% & LC50 value 5.94 mg/ml) and Malathion (92% and LC50 value 5.62 mg/ml). Comparing the results to the reference drugs, guanosine (1) showed potential as a pesticidal agent. Therefore, these particular compounds may provide alternative treatments that enhance the plants under investigation's historical use.


Bio-pesticidal activity Melia dubia molecular docking analysis toxicity analysis


Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-67. doi:10.1093/jee/18.2.265a.
Adedire, C. O., Obembe, O. M., Akinkurolere, R. O., Oduleye, S. O., (2011). Response of Callosobruchus maculatus (Coleoptera: chrysomelidae: Bruchinae) to extracts of cashew kernels. J. Plant Dis. Protec. 118: 75-79. doi:10.1007/BFO3356385.
Atwal, A. S. and Dhaliwal, G. S. (2005). Agricultural Pests of South Asia and Their Management. Kalayani Publishers, New Delhi, India.
Carpinella, C., Ferrayoli, C., Valladares, V., Defago, M. and Palacios, S. (2002). Potent limonoid insect antifeedant from Melia azedarach. Biosci. Biotechnol. Biochem. 66: 1731-736. doi: 10.1271/bbb.66.1731.
Croteau, R. and Gershenzon, J. (1994). Genetic control of monoterpene biosynthesis in mints (Mentha: Lamiaceae). In Genetic engineering of plant secondary metabolism (pp. 193-229). Boston, M. A.: Springer USA. doi: 10.1007/978-1-4615-2544-8_8.
Fatima, S. M., Usman, A., Sohail, K., Afzaal, M., Shah, B., Adnan, M., Ahmed, N., Junaid, K., Shah, S. R. A. and Rehman, I. (2016). Rearing and identification of Callosobruchus maculatus (Bruchidae: Coleoptera) in Chickpea. J. Entomol. Zool. Stud. 4: 264-66.
Goswami, M. Bhagta, S. and Sharma, D. (2020). Melia dubia and its importance: A review. Int. J. Econ. Plants 7: 29-33.  doi:10.23910/2/2020.0351.
Hubschmann, H. J. (2015). Handbook of GC-MS: Fundamentals and applications. Wiley‐VCH Verlag GmbH & Co. KGaA.
Judžentienė, A. and Būdienė, J. (2021). Mugwort (Artemisia vulgaris L.) essential oils rich in germacrene D, and their toxic activity. J. Essen. Oil Res. 33: 256-64. doi:10.1080/ 10412905.2020.1857854.
Kalpna, Hajam, Y.A. and Kumar, R. (2022). Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon 8: doi:10.1016/j.heliyon.2021.e08703.
Kergoat, G. J., Delobel, A., Le Ru, B. and Silvain, J. F. (2008). Seed beetles in the age of the molecule: recent advances on systematics and host-plant association patterns. In: Research on Chrysomelidae, 1. Brill, Leiden, (Eds. Jolivet, P., Santiago-Blay, J. and Schmitt, M.). pp. 59–86.
Kumoro, A. C., Hasan, M. and Singh, H. (2009). Effects of solvent properties on the Soxhlet extraction of diterpenoid lactones from Andrographis paniculate leaves. Sci. Asia 35: 306-09. doi:10.2306/scienceasia1513-1874.2009.35.306.
Mohamad, S., Fathiyah, S. and Aziz, S. (2013). The susceptibility of aphids, Aphis gossypii Glover to lauric acid based natural pesticide. Procedia Eng. 53: 20-28. doi:10.1016/J.PROENG.2013.02.004.
Petit, L., Vernès, L. and Cadoret, J. P. (2021) Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. J. Appl. Phycol. 33: 1579-602. doi:10.1007/s10811-021-02372-9.  
Radha, R., Sermakkani, M. and Thangapandian, V. (2011). Evaluation of phytochemical and antimicrobial activity of Andrographis paniculata Nees (Acanthaceae) aerial parts. Int. J. Pharm. Life Sci. 2: 562-67.
Raffa, K. F. and Priester, T. M. (1985). Synergist as research tools and control agents in agriculture. J. Agric. Entomol. 2: 27-45.
Shunmugadevi, C. and Anburadhika, A. (2021) An evaluation of toxic compounds from Melia dubia (Cav.) leaf extract against stored grain pest Callosobruchus maculatus (Fab.). Crop Res. 56: 247-57. doi:10.31830/2454-1761.2021.  
Stein, S. E. (2012). Mass spectral reference libraries: an ever-expanding resource for chemical identification. Anal. Chem. 84: 7274-282. doi:10.1021/ac301205z.

Global Footprints