Loading...

Salibu rice cultivation in Indonesia’s lowlands: A review of agronomic innovations and sustainability pathways 


Citation :- Salibu rice cultivation in Indonesia’s lowlands: A review of agronomic innovations and sustainability pathways. Res. Crop. 26: 389-399
PAIMAN, NURCAHYONO, NUGRAHINI SUSANTINAH WISNUJATI, DHAREND LINGGA WIBISANA, ARDIYANTA AND ARGAWI KANDITO paiman@upy.ac.id
Address : Department of Agrotechnology, Faculty of Agriculture, Universitas PGRI Yogyakarta, Yogyakarta 55182, Indonesia
Submitted Date : 31-07-2025
Accepted Date : 11-09-2025

Abstract

The Salibu system is an indigenous rice cultivation technique developed by farmers in West Sumatra, Indonesia, which allows multiple harvests from a single planting through the regeneration of tillers from post-harvest rice stubble. Despite its promising potential to enhance rice productivity and sustainability, its adoption remains limited, highlighting the need for a comprehensive review of its principles, applications, and constraints. The structure of this review comprises seven main sections, including an overview of Indonesia’s lowland rice agroecosystems, the Salibu system, innovations, productivity impacts, adoption strategies, challenges, and future development recommendations. This review synthesizes agronomic principles, regional applications, and the sustainability potential of the Salibu system within Indonesia’s lowland rice agroecosystems, and key innovations such as precision stem cutting, alternate wetting and drying (AWD) irrigation, and the use of biofertilisers. Drawing from scientific literature, field reports, and local practices, this article identifies that these innovations can improve regenerative growth, yield stability, and environmental efficiency. However, broader implementation faces challenges, including incompatible rice varieties, variable soil conditions, limited farmer knowledge, and inadequate institutional support. The findings suggest that successful adoption depends on targeted farmer training, participatory extension models, and supportive agricultural policies. In conclusion, the Salibu system offers strong potential to increase rice yields, reduce environmental impacts, and support smallholder livelihoods. Coordinated efforts in research, policy, and on-farm implementation are essential to scale its impact and integrate it into national climate-resilient food strategies.

Keywords

Agricultural innovation lowland rice Salibu system sustainable intensification  


References

Abdulrachman, S., Suhartatik, E., Erdiman, Susilawati, Zaini, Z., Jamil, A., Mejaya, M. J., Sasmita, P., Abdulah, B., Suwarno, Baliadi, Y., Dhalimi, A., Sujinah, Suharna and Ningrum, E. S. (2015). Panduan teknologi budidaya padi Salibu. Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian, Jakarta. pp: 26 (In Indonesian)
Agnese, F., Othman, Z., Mitin, A. and Yahaya, W. A. J. W. (2024). Participatory monitoring in farmer field school program through Whatsapp among indigenous farmers in rural Sarawak, Malaysia. Interact. Learn. Environ. 32: 5699–710.
Agustina, H., Setiawan, B. I., Sugiyanta, Solahudin, M. and Dewi, V. A. K. (2022). Subsurface evapotranspiration irrigation system design in system of rice intensification (SRI) Salibu paddy cultivation. Asian J. Appl. Sci. 10: 1–8.
Alekhya, G., Rajareddy, G., Darjee, S., Kumar, A. A. and Kumar, A. S. T. (2024). Rice ratooning: A revolutionary approach for resource-efficient and sustainable practice for promising future of rice. Int. J. Environ. Clim. Chang. 14: 424–36.
Alridiwirsah, A., Tampubolon, K., Sihombing, F. N., Suprianto, A. A. and Purba, Z. (2021). Agronomic character of ratoon rice: Stem cutting sizes and seprint liquid organic fertilizer. Acta Agrobot. 74: 1–12.
Arulkar, K. P., Sarode, S. C. and Bhuyar, R. C. (2008). Wetting pattern and salt distribution in drip and micro sprinkler irrigation. Agri. Sci. Dig. 28: 124–26.
Aswin, S. N., Asben, A. and Nazir, N. (2023). Life cycle assessment of the Solok rice production system in the Gunung Talang District, Solok Regency, West Sumatra. Asian J. Appl. Res. Community Dev. Empower. 7: 160–9.
Atwill, R. L, Krutz, L. J., Bond, J. A., Golden, B. R., Spencer, G. D., Bryant, C. J., Mills, B. E. and Gore, J. (2020). Alternate wetting and drying reduces aquifer withdrawal in Mississippi rice production systems. Agron. J., 112: 5115–24.
Atwill, Richard L., Spencer, G. D., Bond, J. A., Walker, T. W., Phillips, J. M., Mills, B. E. and Krutz, L. J. (2023). Establishment of thresholds for alternate wetting and drying irrigation management in rice. Agron. J. 115: 1735–45.
Awalina, R., Yanti, D. and Irsyad, F. (2021). Analisis faktor yang mempengaruhi produksi padi Salibu daerah Sumatera Barat. J. Tek. Pert. Andalas 25: 90–95. (in Indonesian)
Bouman, B. A. M., Lampayan, R. M. and Tuong, T. P. (2007). Water management in irrigated rice: Coping with water scarcity. International Rice Research Institute, Los Baños, Philippines. pp: 54.
Deshabandu, K. H. S. T., Noda, Y., Marcelo, V. A. C., Ehara, H., Inukai, Y. and Kano-Nakata, M. (2024). Rice yield and grain quality under fluctuating soil moisture stress. Agronomy 14: doi:10.3390/agronomy14091926.
Dixit, J., Hakak, F. A. and Saxena, A. (2022). Adaption of modified brush cutter for rice harvesting. Agric. Eng. Int. 24: 90–101.
Dobermann, A. and Fairhurst, T. (2000). Rice: Nutrient disorders & nutrient management. Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute (IRRI), Makati, Philippines. pp: 193.
Doni, F., Zain, C. R. C. M., Isahak, A., Fathurrahman, F., Anhar, A., Mohamad, W. N. W., Yusoff, W. M. W. and Uphoff, N. (2018). A simple, efficient, and farmer-friendly Trichoderma-based biofertilizer evaluated with the SRI Rice Management System. Org. Agric. 8: 207–23.
Dou, F., Soriano, J., Tabien, R. E. and Chen, K. (2016). Soil texture and cultivar effects on rice (Oryza sativa L.) grain yield, yield components and water productivity in three water regimes. PLoS ONE 11: doi:10.1371/journal.pone.0150549.
Effendy, L., Hanan, A., Haryanto, Y. and Putri, K. (2021). Farmers’ preference for innovation of Salibu rice technology in Garut Regency, West Java-Indonesia. Int. J. Innov. Sci. Res. Technol. 6: 644–49.
Elkassim, M., Ibrahim, I. M. and Bala, B. (2024). Exploring the role of social media in agricultural practices among rice farmers: Evidence from Kaduna State, Nigeria. Int. J. Intellect. Discourse (IJID) 7: 44–57.
Erythrina, E., Anshori, A., Bora, C. Y., Dewi, D. O., Lestari, M. S., Mustaha, M. A., Ramija, K. E., Rauf, A. W., Mikasari, W., Surdianto, Y., Suriadi, A., Purnamayani, R., Darwis, V. and Syahbuddin, H. (2021). Assessing opportunities to increase yield and profit in rainfed lowland rice systems in Indonesia. Agronomy 11: doi:10.3390/agronomy11040777.
Fageria, N. K., Carvalho, G. D., Santos, A. B., Ferreira, E. P. B. and Knupp, A. M. (2011). Chemistry of lowland rice soils and nutrient availability. Commun. Soil Sci. Plant Anal. 42: 1913–33.
Fitri, R., Erdiman, Kusnadi, N. and Yamaoka, K. (2019). Salibu technology in Indonesia: An alternative for efficient use of agricultural resources to achieve sustainable food security. Paddy Water Environ. 17: 403–10.
Fu, J., Ji, C., Liu, H., Wang, W., Zhang, G., Gao, Y., Zhou, Y. and Abdeen, M. A. (2022). Research progress and prospect of mechanized harvesting technology in the first season of ratoon rice. Agric. 12: doi:10.3390/agriculture12050620.
Gao, R., Zhuo, L., Duan, Y., Yan, C., Yue, Z., Zhao, Z. and Wu, P. (2024). Effects of alternate wetting and drying irrigation on yield, water-saving, and emission reduction in rice fields: A global meta-analysis. Agric. For. Meteorol. 353: doi:10.1016/j.agrformet.2024.110075.
Hong, Y. and Huang, H. (2024). The role of soil microbiota in rice cultivation and its implications for agricultural sustainability. Mol. Soil Biol. 15: 87–98.
Huang, M., Li, Y., Chen, A. and Xu, L. (2020). Design and test of double-cutterbar structure on wide header for main crop rice harvesting. Appl. Sci. 10: doi:10.3390/app10134432.
Ilar, G. Y. (2015). Farmer field school as an effective approach in increasing farmers’ knowledge, skills, and practices, and in enhancing diffusion of innovations: Evidences from selected rice farmers in Masalasa, Victoria, Tarlac, Philippines. J. Public. Aff. Dev. 2: 107–42.
Ishfaq, M., Farooq, M., Zulfiqar, U., Hussain, S., Akbar, N., Nawaz, A. and Anjum, S. A. (2020). Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 241: doi:10.1016/j.agwat.2020.106363.
Islam, M. D., Price, A. H. and Hallett, P. D. (2024). Rhizosphere development under alternate wetting and drying in puddled paddy rice. Eur. J. Soil Sci. 75doi:10.1111/ejss.13533.
Khaerana, K., Widiarta, I. N., Gunawan, A. and Muazzam, A. (2023). Salibu rice cultivation in tungro endemis region. J. Tek. Pertan. Lampung 12: 338–49.
Khairullah, I., Annisa, W., Subagio, H. and Sosiawan, H. (2021). Effects of cropping system and varieties on the rice growth and yield in acid sulphate soils of tidal swampland. Ilmu Pertan. 6: 163–74.
Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustain. 7: 5875–95.
Limpo, S. Y., Fahmid, I. M., Fattah, A., Rauf, A. W., Surmaini, E., Muslimin, Saptana, Syahbuddin, H. and Andri, K. B. (2022). Integrating indigenous and scientific knowledge for decision making of rice farming in South Sulawesi, Indonesia. Sustain. 14doi:10.3390/su14052952.
Mapiye, O., Makombe, G., Molotsi, A., Dzama, K. and Mapiye, C. (2021). Towards a revolutionized agricultural extension system for the sustainability of smallholder livestock production in developing countries: The potential role of ICTS. Sustain. 13doi:10.3390/su13115868.
Mayly, S. and Syafri, A. (2018). Implementation of Salibu rice cultivation technology in Percut Sei Tuan Sub-District. J. Saintech Transf. 1: 33–40.
Mendes, J. D. J., Carrer, M. J., Vinholis, M. D. M. B. and Filho, H. M. D. S. (2024). Adoption and impacts of messaging applications and participation in agricultural information-sharing groups: an empirical analysis with Brazilian farmers. J. Agribus. Dev. Emerg. Econ. 14: 676–93.
Mthiyane, P., Aycan, M. and Mitsui, T. (2024). Integrating biofertilizers with organic fertilizers enhances photosynthetic efficiency and upregulates chlorophyll-related gene expression in rice. Sustain. 16: doi:10.3390/su16219297.
Oda, M., Nguyen, H. C. and Huynh, V. T. (2020). Evaluation of cropping method for perennial ratoon rice: Adaptation of SALIBU to triple-cropping in Vietnam. F1000Research, 8doi:10. 12688/f1000research.20890.3.
Paiman, Isnawan, B., Aziez, A., Subeni. and Salisu, M. A. (2022). The role of agronomic factors in Salibu rice cultivation. Open Agric. J. 16: 1–7.
Paman, U., Inaba, S. and Uchida, S. (2014). The mechanization of small-scale rice farming: Labor requirements and costs. Eng. Agric. Environ. Food 7: 122–6.
Qiao, H., Pu, M., Wang, R. and Zheng, F. (2024). Is the ratoon rice system more sustainable? An environmental efficiency evaluation considering carbon emissions and non-point source pollution. Sustain. 16: doi:10.3390/su16229920.
Razie, F. and Anas, I. (2008). Effect of azotobacter and azospirillum on growth and yield of rice grown on tidal swamp rice field in South Kalimantan. J. Ilmu Tanah dan Lingkung. 10: 41–5.
Sakti, M. B. G., Komariah, Ariyanto, D. P., Sumani, Zaki, M. K. and Noda, K. (2021). The comparison between conventional and rice ratoon system on soil properties, rice productivity and nutrient status. Sains Tanah 18: 65–72.
Sembiring, H., Subekti, N. A., Erythrina, Nugraha, D., Priatmojo, B. and Stuart, A. M. (2020). Yield gap management under seawater intrusion areas of Indonesia to improve rice productivity and resilience to climate change. Agriculture 10: 1–13.
Setiawan, A., Tyasmoro, S. Y. and Nugroho, A. (2014). Intermittent irrigation and cutting height on growth and yield ratoon rice (Oryza sativa L.). Agrivita 36: 72–80.
Shiraki, S., Cho, T. M., Htay, K. M. and Yamaoka, K. (2020). Effects of the double-cutting method for ratooning rice in the Salibu system under different soil moisture conditions on grain yield and regeneration rate. Agronomy 10: doi:10.3390/agronomy10111621.
Subedi, B., Poudel, A. and Aryal, S. (2023). The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. J. Agric. Food Res. 14: doi:10.1016/j.jafr.2023.100733.
Sutarman, Prihatiningrum, A. E. and Miftahurrohmat, A. (2023). Application of trichoderma and aspergillus as biofertilizers in eco-friendly ratoon rice cultivation. Asian J. Agric. Rural Dev. 13: 277–87.
Tuong, T. P., Bouman, B. A. M. and Mortimer, M. (2005). More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. New Directions for a Diverse Planet. In: Proc. of the 4th International Crop Science Congress, 26 Sep – 1 Oct 2004, Brisbane, Australia. pp: 231–41.
Wassmann, R., Jagadish, S. V. K., Sumfleth, K., Pathak, H., Howell, G., Ismail, A., Serraj, R., Redona, E., Singh, R. K. and Heuer, S. (2009). Regional vulnerability of climate change impacts on asian rice production and scope for adaptation. In: Advances in Agronomy, Academic Press, Burlington. pp: 91–133.
Xu, F., Song, T., Wang, K., Xu, W., Chen, G., Xu, M., Zhang, Q., Liu, J., Zhu, Y., Rensing, C., Zhang, J. and Yuan, W. (2020). Frequent alternate wetting and drying irrigation mitigates the effect of low phosphorus on rice grain yield in a 4-year field trial by increasing soil phosphorus release and rice root growth. Food Energy Secur. 9: doi:10.1002/fes3.206.
Yamaoka, K., Htay, K. M., Ofori, J., Fitri, R., Myaing, K., Win, N. K., Kutame, K. and Owusu, G. (2023). Salibu rice ratoon cropping system. JIRCAS, Japan International Agriculture Series No. 26. pp: 166.
Yitayew, A., Abdulai, A., Yigezu, Y. A., Deneke, T. T. and Kassie, G. T. (2021). Impact of agricultural extension services on the adoption of improved wheat variety in Ethiopia: A cluster randomized controlled trial. World Dev. 146: doi:10.1016/j.worlddev.2021.105605.
Yuan, S., Cassman, K. G., Huang, J., Peng, S. and Grassini, P. (2019). Can ratoon cropping improve resource use efficiencies and profitability of rice in central China? Field Crop. Res. 234: 66–72.
Yusup, S. and Sonia, Y. (2024). Can rice farming through the national strategy food estate increase regional production? J. Lahan Suboptimal J. Suboptimal Lands 13: 186–97.
Zarwazi, L. M., Junaedi, A., Sopandie, D., Sugiyanta, Purwono and Sakagami, J. (2022). Prospective rice varieties for high yield performance on modified ratoon Salibu cultivation. Biodiversitas 23: 1065–71.
Zipporah, P., Inoussab, A., Ahouansou, R., Bolorunduro, P. and Ziama, R. Z. (2023). Rice ratooning as a sustainable climate smart adaptation for agriculture in Liberia. Afr. J. Agric. Res. 19: 20–23.
 

Global Footprints