Loading...

Genetic diversity of Phalaenopsis species based on random amplified polymorphic DNA (RAPD) markers 


Citation :- Genetic diversity of Phalaenopsis species based on random amplified polymorphic DNA (RAPD) markers. Res. Crop. 26: 505-512
SRI HARTATI, FITRIA ROVIQOWATI AND ENDANG SETIA MULIAWATI tatik_oc@yahoo.com
Address : Department of Agrotechnology, Faculty of Agriculture, Sebelas Maret University, Jl. Ir. Sutami 36A Surakarta 57126, Central Java, Indonesia
Submitted Date : 23-06-2025
Accepted Date : 10-09-2025

Abstract

 Orchids of the Phalaenopsis genus are very popular ornamental flower plants in the world, due to their attractive phenotypic appearance and long lifespan. This makes orchids of the Phalaenopsis genus have a high selling price and become one of the promising commodities in the flower industry. This study aimed to determine the genetic diversity of Phalaenopsis orchids using RAPD markers. Six species collected from the Bungarinte Orchid Garden were analysed through DNA isolation, amplification, and electrophoresis at the Genetics Lab, Gadjah Mada University. The percentage of genetic diversity of Phalaenopsis spp. analysed by 5 RAPD primers ranged from 29% to 73%, with the division into 2 main clusters. The RAPD primer successfully amplified Phalaenopsis spp with a high polymorphism of 82%-100%. The study concludes that Phalaenopsis venosa and Phalaenopsis amboinensis showed the highest similarity (0.71), indicating good cross-compatibility but low genetic diversity, highlighting the need for inter-cluster crosses to enhance hybrid variation.

Keywords

Dendrogram genetic diversity Phalaenopsis RAPD similarity index 


References

Bagheri, M., Kahrizi, D. and Zebarjadi, A. (2017). Study on genetic variation and morpho-phenologic traits in common bean (Phaseolus vulgaris L.). Biharean Biol. 11: 43–47.
Butwall, S. and Das, S. (2025). In silico approaches for consensus primer design and validation towards development of rapid diagnostics against the Candidatus Liberibacter species. Crop Res. 60: 214-20.
Geldenhuys, G. (2023). Comparison of two methods for DNA extraction from Guava (Psidium guajava). Res. Crop. 24: 337-40.
Hartati, S., Samanhudi, Aziez, A. F. and Eldita, C. (2024). Genetic diversity of Phalaenopsis spp. orchids based on ISSR (Inter Simple Sequence Repeat) markers. Res. Crop. 25: 648-54.
Hartati, S. R. I. and Muliawati, E. S. (2020). Short communication: Genetic variation of Coelogyne pandurata, C. rumphii and their hybrids based on RAPD markers. Biodiversitas 21: 4709-13. doi:10.13057/biodiv/d211033.
Hsu, T. W., Lin, C. Y. and Chen, Y. H. (2024). Genetic profiles and phenotypic patterns in Taiwanese Phalaenopsis orchids: A two-step phenotype and genotype strategy using modified genetic distance algorithms. Front. Plant Sci. 15doi:10.3389/fpls.2024. 1416886.
Jiemjuejun, J., Damrianant, S., Thanananta, T. and Thanananta, N. (2017). Genetic relationship assessment and identification of orchids in the genus Eria using HAT-RAPD markers. Sci. Tech. Asia 22: 19-26.
Kaewwongwal, A., Chen, J., Somta, P., Kongjaimun, A., Yimram, T., Chen, X. and Srinives, P. (2017). Novel alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br locus that confer bruchid (Callosobruchus spp.) resistance to mungbean (Vigna radiata) accession V2709. Front. Plant Sci.  8: doi:10.3389/fpls.2017.01692.
Kurniawati, J., Sugiyarto, L., Yulianti, E., Nurcahyo, H. and Mercuriani, I. S. (2019). Molecular identification of several orchid species based on OPA10 and OPA18 RAPD marker. J. Phys. Conf. Ser. 1397: doi:10.1088/1742-6596/1397/1/012042.
Lee, B. J., Kim, S., Lee, J. W., Lee, H. M. and Eo, S. H. (2021). Technical note: Polyvinylpyrrolidone (PVP) and proteinase-K improve the efficiency of DNA extraction from Japanese larch wood and PCR success rate. Forensic Sci. Int. 328doi:10.1016/j.forsciint.2021.111005.
Lee, Y., Tseng, Y. F., Lee, Y. and Chung, M. (2020). Chromosome constitution and nuclear DNA content of Phalaenopsis hybrids. Sci. Hortic. 262:  doi:10.1016/j.scienta.2019. 109089.
Ma, P., Zhang, H., Shui, H., Zhang, X., Wang, X., Gao, S. and He, D. (2025). Unveiling the heterosis pattern of modern maize breeding in Southwest China through population structure and genetic diversity analysis. BMC Plant Biol. 25: doi:10.1186/s12870-025-06498-7
Merdekawati, F., Rahayu, I. G. and Abror, Y. K. (2021). Methylene blue as alternative DNA staining in electrophoresis. In: Proceedings of the 5th International Conference on Interprofessional Health Collaboration and Community Empowerment Bandung, Indonesia. pp: 87-92.  doi:10.34011/icihcce.v4i1.187.
Mir, M. A., Mansoor, S., Sugapriya, M., Alyemeni, M. N., Wijaya, L. and Ahmad, P. (2021). Deciphering genetic diversity analysis of saffron (Crocus sativus L.) using RAPD and ISSR markers. Saudi J. Biol. Sci. 28: 1308-17.  doi:10.1016/j.sjbs.2020.11.063.
Ni, B. J., Yan, X., Dai, X., Liu, Z., Wei, W., Wu, S. L., Xu, Q. and Sun, J. (2020). Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation. Water Res. 185:..  doi:10.1016/j.watres.2020. 116273.
Nivedha, R., Manonmani, S., Kalaimagal, T., Raveendran, M. and Kavitha, S. (2024). Assessing the genetic diversity of parents for developing hybrids through morphological and molecular markers in rice (Oryza sativa L.). Rice 17: doi:10.1186/s12284-024-00691-2.
Olorunshola, A. G. (2019). Characterization of Nigerian sesame (Sesamum indicum L.) using random polymorphic DNA (RAPD) marker. J. Biotech. Res. 5: 77–84.  doi:10.32861/ jbr.59.77.84.
Rozhmina, T. A., Fu, Y. B., Diederichsen, A., Richards, K. W., Pavelek, M. and Vrbova, M. (2018). Research of genetic polymorphism species Linum usitatissimum L. on a basis a RAPD-method. J. Nat. Fibers 15: 155-61. doi:10.1080/15440478.2016.1193083.
Schalamun, M., Nagar, R., Kainer, D., Beavan, E., Eccles, D., Rathjen, J. P., Lanfear, R. and Schwessinger, B. (2019). An example of how to establish long-read sequencing in a laboratory using challenging plant tissue from Eucalyptus pauciflora. Mol. Ecol. Resour. 19: 77–89.  doi:10.1111/1755-0998.12938.
Seck, F., Covarrubias-Pazaran, G., Gueye, T. and Bartholomé, J. (2023). Realized genetic gain in rice: Achievements from breeding programs. Rice 16doi:10.1186/s12284-023-00677-6.
Singh, V., Kudesia, R. and Bhadauria, S. (2020). Assessment of genetic diversity in some Indian Lablab purpureus L. bean genotypes based on RAPD marker. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 90: 855–61.  doi:10.1007/ s40011-019-01158-x.
Siritheptawee, P., Damrianant, S., Thanananta, T. and Thanananta, N. (2018). Genetic relationship assessment and identification of strap-leaf Paphiopedilum using HAT-RAPD markers. Sci. Tech. Asia 23: 17-22. doi:10.14456/scitechasia.2018.3.
Slameto. (2023). Genetic diversity and molecular analysis using RAPD markers of banana cultivars in the five regions of East Java, Indonesia. Biodiversitas 24: 5035-43. doi:10.13057/biodiv/d240947.
Volza (2024). Global orchid trade: Export and import data (March 2023–February 2024). https://www.volza.com/p/orchid/export
Wibisono, T. H., Suratsih, Yulianti, E., Sugiyarto, L. and Mercuriani, I. S. (2018). Genetic similarity analysis of Vanda tricolor Lindley var. suavis orchids using OPU03 and OPU16 RAPD marker. IOP Conf. Ser: Earth Environ. Sci. 183: doi:10.1088/1755-1315/ 183/1/012005.
Yuhanna, W. L., Hartati, S., Sugiyarto. and Marsusi (2021). Genetic variability of Phaius and Dendrobium orchids based on molecular markers. IOP Conf. Ser.: Earth Environ. Sci. 637: doi:10.1088/1755-1315/637/1/012036.
Zhou, W., Laird, P. W. and Shen, H. (2017). Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 45:  doi:10.1093/nar/gkw967.
Zhu, Y., Chen, Z. H., Dal-Biaco, M. and Hua, S. (2024). Editorial: Genetics, evolution, and utilization of germplasm in crop improvement. Front. Genet. 15:  doi:10.3389/fgene. 2024.1527639.
 

Global Footprints