Loading...

Impact of increasing irrigation intervals on Citron watermelon (Citrullus lanatus var. Citronides) development and growth


Citation :- Impact of increasing irrigation intervals on Citron watermelon (Citrullus lanatus var. Citronides) development and growth. Res. Crop. 26: 476-483
RAMETSE LEBOGANG, TSEKE PONTSHO AND MPHOSI MABOKO pontsho.tseke@ul.ac.za
Address : Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
Submitted Date : 18-03-2025
Accepted Date : 6-08-2025

Abstract

The null hypothesis suggested that the increasing irrigation intervals would not affect the development and growth of Citron watermelon (Citrullus lanatus var. Citronides). The study was conducted in autumn (February-May) 2024 and validated simultaneously. The experiment was laid out in a randomized complete block design (RCBD) with 10 replicates (n=60). Six treatments, namely, 2 (control), 4, 6, 8, 10, and 12-day irrigation intervals, were applied using a 0.5 L glass beaker per plant. The collected plant parameter data were subjected to analysis of variance through the SAS software. Mean separation was achieved using the Waller-Duncan multiple range test at the probability level of 5%. Irrigation intervals had highly significant (P ≤ 0.01) effects on dry shoot mass (DSM), stem diameter (SD), chlorophyll content (CC), vine length (VL), fruit weight (FW), fruit diameter (FD), and dry root mass (DRM) of Citron watermelon, contributing 97, 68, 53, 76, 44, 39 and 69% total treatment variation (TTV) in the respective variables. However, treatments did not significantly affect the fruit number (FN) of Citron watermelons, contributing 17%. The findings from this study indicated that a 4-day irrigation interval had beneficial effects on DSM (22435 kg), VL (1.973 m), and DRM (673 kg). The 6-day irrigation intervals yielded the highest SD (0.6533 cm), CC (82.12), FW (95296 kg), and FD (4.35 cm) values. In contrast, 12-day irrigation intervals resulted in decreased DSM (5482 kg), SD (0.4839 cm), (CC) (40.8), VL (0.6336 m), FW (2690 kg), FD (0.87 cm), and DRM (254 kg) compared to the 2-day control. Four and 6-day irrigation intervals highly improved some of the growth parameters.

Keywords

Climate change food security indigenous leafy vegetables optimum irrigation intervals underutilized vegetables water scarcity 


References

Adeoye, P. A., Adesiji, R. A., Oloruntade A. J. and Njemanze. C. F. (2014). Effect of irrigation intervals on growth and yield of bell pepper (Capsicum annuum) in a tropical semi-arid region. Am. J. Exp. Agric. 4: 515-24.
Amare, D. G. and Abebe, Z. K. (2020). Review on the effect of irrigation interval on different crop production. Int. J. Plant Soil Sci. 32: 1-13.
Barker, A. V. and Pilbeam, D. V. (2007). Handbook of plant nutrition (1st Edn), CRC Taylor  and Francis, New York. doi:10.1201/b18458.
Davidovich-Rikanati, R., Shalev, L., Baranes, N., Meir, A., Itkin, M., Cohen, S., Zimbler, K., Portnoy, V., Ebizuka, Y., Shibuya, M., Burger, Y., Katzir, N., Schaffer, A. A., Lewinsohn, E. and Tadmor, Y. (2015). Recombinant yeast as a functional tool for understanding bitterness and cucurbitacin biosynthesis in watermelon (Citrullus spp.). Yeast 32: 103-14. doi:10.1002/yea.3049.
El Jaouhari, N., Abouabdillah, A., Bouabid, R., Bourioug, M., Aleya, L. and Chaoui. M. (2018). Assessment of sustainable deficit irrigation in a Moroccan apple orchard as a climate change adaptation strategy. Sci. Total Environ. 642: 574-81.
Ghasemi, A. and Zahediasl, S. (2012). Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 10: 486-89. doi:10.5812/ijem.3505.
Hameed, M. Nawaz, T. Ashraf, M. Tufail, A. Kanwal, H. Ahmad, M. S. A. and Ahmad, I. (2012).  Leaf anatomical adaptations of some halophytic and xerophytic sedges of the Punjab. Pak. J. Bot. 44: 159-64.
Jensen, M. E., Burman, R. D. and Allen. R. G. (1990). Evapotranspiration and irrigation  water requirements. ASCE Manuals and Reports on Engineering Practice 70. New York. pp: 332.
Kanwal, A., Sharma, I., Singh, R. and Rana, M. K. (2024). Nanotechnology for sustainability of agriculture and environment: Green synthesis and application of nanoparticles – A review. Res. Crop. 25: 578-91.
Kim, Y., Choi, D., Zhang, C., Liu, F. H. and Lee, S. (2018). Profiling cucurbitacins from diverse watermelons (Citrullus spp.). Hort. Environ. Biotechnol. 59: 557-66.
Khazaie, H. R., Nadjafi, F. and Bannayan. M. (2007). Effect of irrigation frequency and planting density on herbage biomass and oil production on thyme (Thyme vulguris) and hyssop (Hyssopus officinalis). Ind. Crops Prod. Int. J. 27: 315-21.
Kanda, E. K., Senzanje, A., Mabhaudhi, T. and Mubanga. S. C. (2020). Nutritional yield and nutritional water productivity of cowpea (Vigna unguiculata L. Walp) under varying irrigation water regimes. Water SA 46: 410-18.
Malambane, G., Madumane, K., Sewelo, L. T. and Batlang, U. (2023). Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. Front Plant Sci. 13:  doi:10.3389/fpls.2022074395.
Mirabad, A. A., Lotfi, M. and Roozban. M. R. (2013). Impact of water-deficit stress on growth, yield and sugar content of cantaloupe (Cucumis melo L.). Int. J. Agric. Sci. 6: 605-09.
Mirás-Avalos, J. M., Alcobendas, R., Alarcón, J. J., Valsesia, P., Génard, M. and Nicolás. E. (2013). Assessment of the water stress effects on peach fruit quality and size using a fruit tree model, QualiTree. Agric. Water Manage. 128: 1-12.
Moosavi, S. G. R., Seghatoleslami, M. J., Javadi, H. and Ansari-nia. E. (2011). Effect of irrigation intervals and planting patterns on yield and qualitative traits of forage sorghum. Adv. Environ. Biol. 5: 3363-68.
Ngwepe, R. M., Mashilo, J. and Shimelis, H. (2019) Progress in genetic improvement of citron watermelon (Citrullus lanatus var. Citronides): a review. Genet. Resour. Crop Evol. 66: 735-58.
Raemaekers, R. H. (2001). Crop production in tropical Africa. Brussels: DGIC. Brussels, Belgium.Sahin, U., Kuslu, Y. and Kiziloglu. F. (2015). Response of cucumbers to different irrigation regimes applied through drip-irrigation system. J. Agric. Sci. 25: 198-205.
SAS Institute INC. (2008). SAS/STAT® 9.2 Qualification tools user’s guide. SAS Institute Inc, Cary, North Carolina. Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52: 591-611.
Silva, S. S., Lima, G. S., Lima, V. L. A., Soares, L. A. A., Gheyi, H. R. and Fernandes, P. D. (2021). Quantum yield, photosynthetic pigments and biomass of mini watermelon under irrigation strategies and potassium. Rev. Caatinga 34: 659-69.
Taisheng, D., Shaozhong, K., Jianhua, Z. and William. J. D. (2015). Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 66: 2253-69.
Vaja, M., Kulshrestha, K. and Lakhani, H. (2024). Natural farming in India: A sustainable alternative to conventional agricultural practices​​. Farm. Manage. 9: 63-65.
Wang, Y., Guo, S., Tian, S., Zhang, J., Ren, Y., Sun, H., Gong, G., Zhang, H. and Xu. Y. (2017). The abscisic acid pathway is involved in the regulation of watermelon fruit ripening and quality trait evolution. PLoS One 12: doi:10.1371/journal.pone.0179944.
Zhang, H., Xiong, Y., Huang, G., Xu, X. and Huang, Q. (2017). Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip rrigation in sandy soil of the Hetao Irrigation District. Agric. Water Manag. 179: 205-14.
 
 

Global Footprints