Loading...

Allelopathic effect of maize residue on the growth of sunflower weeds


Citation :- Allelopathic effect of maize residue on the growth of sunflower weeds. Res. Crop. 26: 187-193
ALAA A. J. AL-BEHADILI alaa.abd@sc.uobaghdad.edu.iq
Address : Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
Submitted Date : 2-03-2025
Accepted Date : 9-03-2025

Abstract

Sunflower productivity in Iraq is hindered by weed competition, necessitating effective yet sustainable control methods. Integrating maize residues with herbicide applications may enhance weed suppression while improving soil properties. This study investigates the effect of incorporating maize residues and Metricam herbicide on weed growth in sunflower fields during 2024 at the University of Baghdad.  Maize residues and Metricam herbicide were applied to the field soil at 50% and 75% of the recommended dose, individually and in combination. Additionally, two treatments were included: a full recommended herbicide dose and a weed-free control for comparative analysis. Maize residues and Metricam herbicide significantly reduced weed density and dry weight in sunflower fields, with the greatest suppression observed when combined. The 50% herbicide dose with Baghdad3 and Al-Maha residues achieved superior control (86 and 75%; 85 and 76%) compared to the full recommended dose (71 and 63%). The 75% herbicide dose with residues showed the highest inhibition (76% for Baghdad3, 69% for Al-Maha), outperforming the full-dose herbicide alone (45% for Al-Maha). Soil phenolic content peaked at two to four weeks post-application, coinciding with reduced weed germination. Applying 75% of the recommended Metricam dose with maize residues effectively suppressed weed growth in sunflower fields. 

Keywords

Allelopathy maize sunflower weeds

References

AL-Behadili, A. A. J and Fadhel. L. Z. (2023). Integration of sunflower and sorghum water extracts applied alone or in combination with reduced doses of chevalier for weed control in wheat. Iraqi J. Sci. 64: 3330-39. doi:10.24996/ijs.2023.64.7.14.
Albehadili, A. A. J. (2019). Allelopathic effect of barley Cultivars residue on companion weeds growth of cowpea. Plant Archives 19: 424-29. 
AL-Behadili, A. A. J. (2024). Isolation and identification of allelopathic compounds from the residues of some sunflower cultivars using HPCL technology. Iraqi J. Agric. Sci. 55: 1903-09. doi:10.36103/g5wh8034.
Al-Chalabi, F. T. (2003). Biological response of wheat to weeds control with diclofop-methyl herbicide sequentially with 2,4-D and its effect on grain yield. Iraqi J. Agric. Sci. 34: 89-100.
Almehemdi, A. F., Mheidi, U. H and Almarie, A. A. (2017). Estimated leaf area model and growth performance of buckwheat under Iraqi environment conditions. J. Ani. Plant Sci. 27: 1665-70. 
Chaitanya, P. N., Singh, R. G., Choudhary, V. K., Datta, D., Nandan, R and Singh, S. S. (2024). Challenges and alternatives of herbicide-based weed management. Agronomy 14: doi:10.3390/agronomy14010126.
Duke, S. O and Dyan, F. E. (2006). Mode of action of phytotoxins from plants. In: M. J. Reigosa., N. Pedrol., L. Gonzlez. (Eds.). Allelopathy: a physiological process with ecological implications. Springer, Netherlands pp: 511-36.
Edita, S., Rasic, S., Lucic, P., Zimmer, D., Mijic, A., Antunovic, S., Japundzic-Palenkic, B., Lukacevic, M., Dinko Zima and Stefanic, I. (2023). The critical period of weed control influences sunflower (Helianthus annuus L.) yield, yield components but not oil content. Agronomy 13: doi:10.3390/agronomy13082008.
Farhana Zaman, Shafiqul Islam and Hisashi Kato-Noguchi (2018). Allelopathic activity of the Oxalis europea L. extracts on the growth of eight test plant species. Res. Crop. 19: 304-09.
Javaid, M. M., Mahmood, A., Bhatti, M. I. N., Waheed, H., Attia, K., Aziz, A., Nadeem. M. A., Khan, N., Al-Doss, A. A., Fiaz, S. and Wang, X. (2022). Efficacy of metribuzin doses on physiological, growth, and yield characteristics of wheat and its associated weeds. Front. Plant Sci. 13: 1-11. doi:10.3389/fpls.2022.866793.
Jones, L., Sim, R. E., Hampton, J. G., Rolston, M. P and Kelly, M. (2021). The impact of different post-harvest residue management practices on a tall fescue (Festuca arundinacea) seed crop with full straw load retained. Agronomy New Zealand, 51: 23-33. 
Le Thi Hien, SU Hyuk Park, Yun Ji Park, Ok Jae Won, Jae-Bok Hwang, Sang Un Park and Kee Woong Park (2015). Allelopathy in Sorghum bicolor (L.) Moench: A review on environmentally friendly solution for weed control. Res. Crop. 16: 657-62.
Mahapatra, A., Nikhitha, D., Mohanty, S and Khatua, R. (2024). Integrated weed management in sunflower. Int. J. Res. Agron. 11: 574-77. 
Marianna K. B., Płonka, J and Barchanska, H. (2023). Allelopathy as a source of bioherbicides: challenges and prospects for sustainable agriculture. Rev. Environ. Sci. Biotechnol. 22: 471–504. 
Monteiro, A. and Santos, S. (2022). Sustainable approach to weed management: The role of precision weed management. Agronomy 12: doi:10.3390/agronomy12010118.
Mutar, H. M., Alsaadawi, I. S and Lahmod, N. R. (2022). Trifluralin and corn residues for weed management in mung beanfields, central Iraq. Iraqi J. Sci. 63: 938-47. 
Rice, E. L. (1984). Allelopathy (2nd ed.). Academic Press, London. 
Waseem, M. and Fauconnier, M. L. (2024). Phenolic profiling unravelling allelopathic encounters in agroecology. Plant Stress 13: doi:10.1016/j.stress.2024.100523.


Global Footprints