Loading...

Optimizing in vitro photoperiod for improved morphogenesis in smoke tree (Cotinus coggygria Scop.)

Citation :- Optimizing in vitro photoperiod for improved morphogenesis in smoke tree (Cotinus coggygria Scop.). Res. Crop. 26: 167-174
I.V. MOGILEVSKAYA AND O. O. ZHOLOBOVA mogilevskaya-i@vfanc.ru
Address : Federal State Budget Scientific Institution «Federal Scientific Centre of Agroecology, Complex Melioration and Protective Afforestation of the Russian Academy of Sciences» (FSC of Agroecology RAS), 400062 Volgograd, Russia
Submitted Date : 25-02-2025
Accepted Date : 11-03-2025

Abstract

Cotinus coggygria thrives in temperate zones, adapting to dry, rocky soils and aiding afforestation. Its bioactive compounds have medicinal and agricultural applications. Optimizing in vitro photoperiod conditions is crucial for improving its propagation efficiency. Therefore, the aim of our study was to determine whether photoperiod duration affects the morphogenesis of C. coggygria in vitro. Cultivation was carried out on a nutrient medium according to the Murashige and Scoog protocol (MS) and with the addition of 6-benzylaminopurine (BA) at a concentration of 0.2 mg/L and indole-3-butyric acid (IBA) at a concentration of 0.5 mg/L. The study determined the growth characteristics of C. coggygria microshoots after 6 weeks of cultivation in controlled conditions. One-way ANOVA analysis and factorial analysis were used to determine the photoperiod’s effect on the studied parameters of microshoots on different media. According to the results, high growth indices for C. coggygria regenerants were at 20/4-hour photoperiod and can be used at the propagation stage on MS medium supplemented with 0.5 mg/L IBA. The maximum percentage of rooted C. coggygria explants with a branched root system was obtained at an 8/16-hour photoperiod. To improve the efficiency of microclonal propagation technology and uniform development of the vegetative part of the shoots, we recommend using 8/16 h and 20/4 h photoperiods for full-fledged growth of the entire C. coggygria microshoots in vitr0 on 0.5 IBA medium.

Keywords

Cotinus coggygria morphogenesis photoperiod plant growth regulators smoke tree 

References

Arradaza, C. C., Cedo, M. L. O., Aspuria, E. T., De Guzman, C. C., Cardenas, L. B. Zara, R. R. and Gonzaga, R. A. (2022). Vegetative phase extension for steviol glycoside accumulation in Stevia: photoperiod, in vitro and ex vitro cultures manipulation. J. ISSAAS. 28: 25-32. 
Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B. and Latouche, G. (2012). A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 146: 251-60. doi:10.1111/j.1399-3054.2012.01639.x.
Chu, Q., Qin, Y., Li, C., Cheng, Sh., Su, L. He, Z., Zhou, X., Shao, D. and Guo, X. (2023). Effects of different photoperiods on the growth and nutritional characteristics of two celery cultivars in plant factory. Agronomy 13: doi:10.3390/agronomy13123039.
de Castro, K. M., Batista, D. S., Fortini, E. A., Silva, T. D., Felipe, S. H. S., Fernandes, A. M., de Jesus Sousa R. M., Campos, V. R., Grazul, R. M., Viccini, L. F. and Otoni, W. C. (2019). Photoperiod modulates growth, morphoanatomy, and linalool content in Lippia alba L. (Verbenaceae) cultured in vitro. Plant Cell Tissue Organ Cult. 139: 139-53. doi:10.1007/s11240-019-01672-w.
Ilczuk, A. and Jacygrad, E. (2016). The effect of IBA on anatomical changes and antioxidant enzyme activity during the in vitro rooting of smoke tree (Cotinus coggygria Scop). Sci. Hortic. 210: 268-76. doi:10.1016/j.scienta.2016.07.036.
Khuzhakhmetova, A. and Sapronova. D. (2023). Structural and functional characteristics of the leaves of economically valuable plants in arid environments. Res. Crop. 24: 346-51.
Khuzhakhmetova, A., Sapronova, D., Belyaev, A. and Lazarev, S. (2023). Study on selection of woody plants to create sustainable green spaces in sparsely forested rural areas. Res. Crop. 24: 584-92.
Kumar, R. (2023). Effect of culture media and photoperiod on in vitro culture of pomegranate cv. Sindhuri. AGBIR 39: doi:10.35248/0970-1907.23.39.748-754.
Nitschke, S., Cortleven, A. and Schmülling, T. (2017). Novel stress in plants by altering the photoperiod. Trends Plant Sci. 22: 913-16. doi:10.1016/j.tplants.2017.09.005.
Serrano-Bueno, G., Sánchez de Medina Hernández, V. and Valverde, F. (2021). Photoperiodic signaling and senescence, an ancient solution to a modern problem? Front. Plant Sci. 12: doi:10. 3389/fpls.2021.634393.
Sharma, M. K. (2023). How plants adapt to the photoperiod. ARRB  38: 17-45. doi:10.9734/arrb/2023/v38i430580.
Verma, R., Jakhar, M. L. and Kumar, R. (2019). Effect of photoperiod on in vitro culture of Guggul [Commiphora wightii (Arnott)]—a medicinal plant.  Int. J. Curr. Microbiol. Appl. Sci. 8: 1844-51. doi:10.20546/ijcmas.2019.804.215.
Xu, Y., Yang, M., Cheng, F., Liu, S. and Liang, Y. (2020). Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biol. 20: 1-12. doi:10.1186/s12870-020-02480-7.
Zholobova, O. O., Mogilevskaya, I. V. and Melnik, S. V. (2024). Screening smoke tree (Cotinus coggygria scop.) on osmotic stress using polyethylene glycol 6000 in vitro. Indian J. Agric. 58: 36-42. doi:10.18805/IJARe.AF-781.

Global Footprints