Arradaza, C. C., Cedo, M. L. O., Aspuria, E. T., De Guzman, C. C., Cardenas, L. B. Zara, R. R. and Gonzaga, R. A. (2022). Vegetative phase extension for steviol glycoside accumulation in Stevia: photoperiod, in vitro and ex vitro cultures manipulation. J. ISSAAS. 28: 25-32.
Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B. and Latouche, G. (2012). A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 146: 251-60. doi:10.1111/j.1399-3054.2012.01639.x.
Chu, Q., Qin, Y., Li, C., Cheng, Sh., Su, L. He, Z., Zhou, X., Shao, D. and Guo, X. (2023). Effects of different photoperiods on the growth and nutritional characteristics of two celery cultivars in plant factory. Agronomy 13: doi:10.3390/agronomy13123039.
de Castro, K. M., Batista, D. S., Fortini, E. A., Silva, T. D., Felipe, S. H. S., Fernandes, A. M., de Jesus Sousa R. M., Campos, V. R., Grazul, R. M., Viccini, L. F. and Otoni, W. C. (2019). Photoperiod modulates growth, morphoanatomy, and linalool content in Lippia alba L. (Verbenaceae) cultured in vitro. Plant Cell Tissue Organ Cult. 139: 139-53. doi:10.1007/s11240-019-01672-w.
Ilczuk, A. and Jacygrad, E. (2016). The effect of IBA on anatomical changes and antioxidant enzyme activity during the in vitro rooting of smoke tree (Cotinus coggygria Scop). Sci. Hortic. 210: 268-76. doi:10.1016/j.scienta.2016.07.036.
Khuzhakhmetova, A. and Sapronova. D. (2023). Structural and functional characteristics of the leaves of economically valuable plants in arid environments. Res. Crop. 24: 346-51.
Khuzhakhmetova, A., Sapronova, D., Belyaev, A. and Lazarev, S. (2023). Study on selection of woody plants to create sustainable green spaces in sparsely forested rural areas. Res. Crop. 24: 584-92.
Kumar, R. (2023). Effect of culture media and photoperiod on in vitro culture of pomegranate cv. Sindhuri. AGBIR 39: doi:10.35248/0970-1907.23.39.748-754.
Nitschke, S., Cortleven, A. and Schmülling, T. (2017). Novel stress in plants by altering the photoperiod. Trends Plant Sci. 22: 913-16. doi:10.1016/j.tplants.2017.09.005.
Serrano-Bueno, G., Sánchez de Medina Hernández, V. and Valverde, F. (2021). Photoperiodic signaling and senescence, an ancient solution to a modern problem? Front. Plant Sci. 12: doi:10. 3389/fpls.2021.634393.
Sharma, M. K. (2023). How plants adapt to the photoperiod. ARRB 38: 17-45. doi:10.9734/arrb/2023/v38i430580.
Verma, R., Jakhar, M. L. and Kumar, R. (2019). Effect of photoperiod on in vitro culture of Guggul [Commiphora wightii (Arnott)]—a medicinal plant. Int. J. Curr. Microbiol. Appl. Sci. 8: 1844-51. doi:10.20546/ijcmas.2019.804.215.
Xu, Y., Yang, M., Cheng, F., Liu, S. and Liang, Y. (2020). Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biol. 20: 1-12. doi:10.1186/s12870-020-02480-7.
Zholobova, O. O., Mogilevskaya, I. V. and Melnik, S. V. (2024). Screening smoke tree (Cotinus coggygria scop.) on osmotic stress using polyethylene glycol 6000 in vitro. Indian J. Agric. 58: 36-42. doi:10.18805/IJARe.AF-781.
Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B. and Latouche, G. (2012). A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 146: 251-60. doi:10.1111/j.1399-3054.2012.01639.x.
Chu, Q., Qin, Y., Li, C., Cheng, Sh., Su, L. He, Z., Zhou, X., Shao, D. and Guo, X. (2023). Effects of different photoperiods on the growth and nutritional characteristics of two celery cultivars in plant factory. Agronomy 13: doi:10.3390/agronomy13123039.
de Castro, K. M., Batista, D. S., Fortini, E. A., Silva, T. D., Felipe, S. H. S., Fernandes, A. M., de Jesus Sousa R. M., Campos, V. R., Grazul, R. M., Viccini, L. F. and Otoni, W. C. (2019). Photoperiod modulates growth, morphoanatomy, and linalool content in Lippia alba L. (Verbenaceae) cultured in vitro. Plant Cell Tissue Organ Cult. 139: 139-53. doi:10.1007/s11240-019-01672-w.
Ilczuk, A. and Jacygrad, E. (2016). The effect of IBA on anatomical changes and antioxidant enzyme activity during the in vitro rooting of smoke tree (Cotinus coggygria Scop). Sci. Hortic. 210: 268-76. doi:10.1016/j.scienta.2016.07.036.
Khuzhakhmetova, A. and Sapronova. D. (2023). Structural and functional characteristics of the leaves of economically valuable plants in arid environments. Res. Crop. 24: 346-51.
Khuzhakhmetova, A., Sapronova, D., Belyaev, A. and Lazarev, S. (2023). Study on selection of woody plants to create sustainable green spaces in sparsely forested rural areas. Res. Crop. 24: 584-92.
Kumar, R. (2023). Effect of culture media and photoperiod on in vitro culture of pomegranate cv. Sindhuri. AGBIR 39: doi:10.35248/0970-1907.23.39.748-754.
Nitschke, S., Cortleven, A. and Schmülling, T. (2017). Novel stress in plants by altering the photoperiod. Trends Plant Sci. 22: 913-16. doi:10.1016/j.tplants.2017.09.005.
Serrano-Bueno, G., Sánchez de Medina Hernández, V. and Valverde, F. (2021). Photoperiodic signaling and senescence, an ancient solution to a modern problem? Front. Plant Sci. 12: doi:10. 3389/fpls.2021.634393.
Sharma, M. K. (2023). How plants adapt to the photoperiod. ARRB 38: 17-45. doi:10.9734/arrb/2023/v38i430580.
Verma, R., Jakhar, M. L. and Kumar, R. (2019). Effect of photoperiod on in vitro culture of Guggul [Commiphora wightii (Arnott)]—a medicinal plant. Int. J. Curr. Microbiol. Appl. Sci. 8: 1844-51. doi:10.20546/ijcmas.2019.804.215.
Xu, Y., Yang, M., Cheng, F., Liu, S. and Liang, Y. (2020). Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biol. 20: 1-12. doi:10.1186/s12870-020-02480-7.
Zholobova, O. O., Mogilevskaya, I. V. and Melnik, S. V. (2024). Screening smoke tree (Cotinus coggygria scop.) on osmotic stress using polyethylene glycol 6000 in vitro. Indian J. Agric. 58: 36-42. doi:10.18805/IJARe.AF-781.