Loading...

Influence of arbuscular mycorrhizal fungi on the growth of soybean (Glycine max L.) under saline stress conditions


Citation :- Influence of arbuscular mycorrhizal fungi on the growth of soybean (Glycine max L.) under saline stress conditions. Res. Crop. 26: 46-51
T. A. MASENYA, B.C. MASILELA, A. M. THUKWANA, S. MANKGE, M. K. MADUNA AND L. LETSOALO tamasenya@gmail.com
Address : Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Private Bag X11283, Mbombela, South Africa
Submitted Date : 24-02-2025
Accepted Date : 22-03-2025

Abstract

Global warming has resulted in the presence of elevated salt concentrations in soils, which hinders crop productivity. The scarcity of land areas suitable for cultivating crucial crops in regions with low saline concentrations is a significant concern. Recent research has demonstrated the rising dependence on the use of Arbuscular Mycorrhiza Fungi (AMF) as an option to increase crop adaption to salinity stress. Two separate experiments were undertaken in March-May and September-November in 2023 to investigate if AMF might boost soybean growth under saline stress conditions. The experiments were arranged as a 4 × 4 factorial design with four geometric series of NaCl: CaCl2 (3:1) of artificial chloride salinity levels: 0, 0.25, 0.5 and 0.75 dS/m and four levels of AMF: 0,10, 20 and 30 g/pot in a RCBD, with 4 replications. Sixty days after the commencement of treatments application, AMF and salt interaction had a significant impact on stem diameter and dry root mass, accounting for 11.07 and 5.67% of the total treat variation (TTV) in Experiment 1, while in Experiment 2, treatments had a significant impact on number of branches and number of pods contributing 3.98 to 6.01% of the TTV. The AMF and salt interaction also had a significant impact on soil EC, accounting for 5.12% of the TTV in Experiment 1, with no significant effect observed in Experiment 2. The utilization of AMF is a viable remedy and may foster improved productivity under climate variability.

Keywords

Arbuscular Mycorrhiza Fungi climate variability salinity stress soybean

References

Atta, K., Mondal, S., Gorai, S., Singh, A.P., Kumari, A., Ghosh, T., Roy, A., Hembram, S., Gaikwad, D.J., Mondal, S. and Bhattacharya, S. (2023). Impacts of salinity stress on crop plants: Improving salt tolerance through genetic and molecular dissection. Front. Plant Sci. 14:1241736.
Baltazar-Bernal, O., Spinoso-Castillo, J. L., Mancilla-Álvarez, E. and Bello-Bello, J. J. (2022). Arbuscular Mycorrhizal Fungi induce tolerance to salinity stress in Taro plantlets (Colocasia esculenta L. Schott) during acclimatization. Plants 11:1780.
Beltrano, J., Ruscitti, M., Arango, M. C. and Ronco, M. (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J. Soil Sci. Plant Nutr. 13:123-41. 
Bokhari, S.S., Farhat, H., Ali, S.A., Urooj, F., Rahman, A., Ara, J., Irfan, M. and Ehteshamul Haque, S.Y.E.D. (2023). Role of mycorrhizospheric fluorescent Pseudomonas in suppressing the root rot disease, enhancement of Vesicular Arbuscular Mycorrhizal (VAM) population and phosphorus uptake in sunflower. Pak. J. Bot. 55: 779-90.
Demir, S. and Akkopru, A. (2024). Use of arbuscular mycorrhizal fungi for biocontrol of soilborne fungal plant pathogens. In Biological control of plant diseases. CRC Press. pp. 17-46.
Doane, T. A., Silva, L. C. and Horwath, W. R. (2019). Exposure to light elicits a spectrum of chemical changes in soil. J. Geophys. Res. 124: 2288-310.
Garg, N. and Manchanda, G. (2008). Effect of Arbuscular Mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (Pigeonpea). J. Plant Growth Regul. 27: 115-24.
Ghasemi, A. and Zahediasl, S. (2012). Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Clin. Endocrinol. Metab. 10: 486.
Guleria, H., Kumar, P., Jyoti, B., Kumar, A., Paliwal, A. and Paliwal, A. (2019). Genetic variability and correlation analysis in soybean (Glycine max (L.) Merrill) genotypes. Int. J. Chem. Stud. 7: 1928-32. 
Haj-Amor, Z., Araya, T., Kim, D. G. and Bouri, S. (2023). Climate change effects on soil salinity in rainfed maize areas: a case study from South Africa. Water Sup. 23: 2447–65. 
Hameed, A., Dilfuza, E., Abd-Allah, E. F., Hashem, A., Kumar, A. and Ahmad, P. (2014). Salinity stress and Arbuscular Mycorrhizal (AM) symbiosis in plants, in use of microbes for the alleviation of soil stresses, Ed. M. Miransari (NY: Springer Science+Business Media). 1: 139-59. 
Jeon, J.Y., Han, Y., Kim, Y. W., Lee, Y.W., Hong, S. and Hwang, I. T. (2019). Feasibility of unsaturated fatty acid feedstocks as green alternatives in bio‐oil refinery. Biofuel. Bioprod. Bior.  13: 690-722. 
Masenya, T.A., Mabila, S.W., Hlophe, T. and Letsoalo, M. L. (2023). Vesicular Arbuscular Mycorrhizal influence on growth of cancer bush (Sutherlandia frutescens) and alleviation of saline stress. Res. Crop. 24:179-84. 
Mazhar, S., Pellegrini, E., Contin, M., Bravo, C. and De Nobili, M. (2022). Impacts of salinization caused by sea level rise on the biological processes of coastal soils-a review. Front. Environ. Sci. 10: 909415.
Osman, K. T. and Osman, K. T. (2018). Saline and sodic soils. Management of soil problems. Springer. pp. 255-98.
Rayment, G. E. and Higginson, F. R. (1992). Australian laboratory handbook of soil and water chemical methods. Inkata Press. pp. 330. 
Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52: 591-54. 
Tseke, P. E. and Mashela, P. W. (2017). Efficacy of fresh fruit from Cucumis myriocarpus as Nemaroic-AL phytonematicide on suppression of root-knot nematodes in tomato plant production. Acta Agric. Scand. B. Soil Plant Sci. 68:161–65. 
Yadav, R. S., Mahatma, M. K., Thirumalaisamy, P. P., Meena, H.N., Bhaduri, D., Arora, S. and Panwar J. (2017). Arbuscular Mycorrhizal Fungi (AMF) for sustainable soil and plant health in salt-affected soils. Bioremediation of salt affected soils: an Indian perspective. pp.133–56. 
Yan, Z., Ding, W., Xie, G., Yan, M., Han, Y. and Xiong X. (2023). Quantitative relationship between soil pH and electrical conductivity values and cadmium phytoavailability for Chinese cabbage under simulated conditions. Ecotoxicol. Environ. Saf. 266:115566.

Global Footprints