Loading...

Effect of sodium chloride mediated salt stress on seedling vigour and growth of okra (Abelmoschus esculentus L.) grown in hydroponics

Citation :- Effect of sodium chloride mediated salt stress on seedling vigour and growth of okra (Abelmoschus esculentus L.) grown in hydroponics. Res. Crop. 26: 116-123
ASSIMA FIRDOOS, PRAVEEN GULERIA AND VINEET KUMAR vineetkumar22@gmail.com
Address : Department of Botany, School of Bioengineering and Biosciences, Lovely Professional, University (LPU), Jalandhar - Delhi G.T. Road, Phagwara-144411, Punjab, India
Submitted Date : 4-01-2025
Accepted Date : 10-03-2025

Abstract

Salinity is a major abiotic stressor that has been reported to affect 900 million hectares of cultivated land and induce agricultural loss of more than $25 million per year. Okra is a vital annual vegetable crop grown globally in 2.5 million hectares of land. Further, it is a crop sensitive to a variety of abiotic stresses including salt stress, making it important to reveal the effect of salt stress on the morphological and biochemical parameters of okra. In view of this, the present study was conducted from May 2023 to July 2024 at Lovely Professional University, Phagwara, Punjab, India to determine the effect of variable NaCl concentrations; 25, 50, 75 mM, on the morphological and biochemical aspects of okra in hydroponics. Results indicated that the salinity stress reduced the growth attributes including shoot length (15-49%), root length (24-61%) and fresh weight (19-61%) as compared to the control. The physiological attributes such as photosynthetic pigments (Chlorophyll a, 11-34%; Chlorophyll b, 15-38%; and Carotenoids, 8-29%), carbohydrates (25-45%), and total proteins (23-50%) content were also diminished by salinity stress. Moreover, the accumulation of enzymatic parameters, superoxide dismutase, catalase, and ascorbate peroxidase, and the non-enzymatic components including phenol and flavonoids triggered the antioxidant system in okra seedlings to regulate the salinity stress. 

Keywords

Antioxidant carbohydrates protein regulation salinity stress

References

Ahmad, A., Naqvi, S. A., Jaskani, M. J., Waseem, M., Ali, E., Khan, I. A., Manzoor, M. F., Siddeeg, A., Aadil, and Aadil, R. M. (2021). Efficient utilization of date palm waste for the bioethanol production through Saccharomyces cerevisiae strain. Food Sci. Nutr. 9: 2066-74.
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A. and Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 156: 64-77.
Ayub, Q., Khan, S. M., Khan, A., Hussain, I., Ahmad, Z. and Khan, M. A. (2018). Effect of gibberellic acid and potassium silicate on physiological growth of Okra (Abelmoschus esculentus L.) under salinity stress. Pure Appl. Biol. 7: 8-19.
Azeem, M., Pirjan, K., Qasim, M., Mahmood, A., Javed, T., Muhammad, H., Yang, S., Dong, R., Ali, B. and Rahimi, M. (2023). Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Sci. Rep. 13: doi:10.1038/s41598-023-29954-6.
dos Santos Farias, D. B., da Silva, P. S. O., Lucas, A. A. T., de Freitas, M. I., de Jesus Santos, T., Fontes, P. T. N. and de Oliveira Júnior, L. F. G. (2019). Physiological and productive parameters of the okra under irrigation levels. Sci. Hortic. 252: 1-6.
Elkhalifa, A. E. O., Alshammari, E., Adnan, M., Alcantara, J. C., Awadelkareem, A. M., Eltoum, N. E., Mehmood, K., Panda, B. P. and Ashraf, S. A. (2021). Okra (Abelmoschus esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications. Molecules 26: doi:10.3390/molecules26030696.
Fallah, F., Nokhasi, F., Ghaheri, M., Kahrizi, D., Agha, A. B. A., Ghorbani, T., Kazemi, E. and Ansarypour, Z. (2017). Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cell. Mol. Biol. 63: 102-06.
Gautam, A., Rusli, L. S., Yaacob, J. S., Kumar, V. and Guleria, P. (2024). Nanopriming with magnesium oxide nanoparticles enhanced antioxidant potential and nutritional richness of radish leaves grown in field. Clean Technol. Environ. Policy. pp: 1-17.
Gautam, A., Sharma, P., Ashokhan, S., Yaacob, J. S., Kumar, V. and Guleria, P. (2023). Inhibitory impact of MgO nanoparticles on oxidative stress and other physiological attributes of spinach plant grown under field condition. Physiol. Mol. Biol. Plants 29: 1897-913.
Gopalakrishnan, T. and Kumar, L. (2020). Modeling and mapping of soil salinity and its impact on paddy lands in Jaffna Peninsula, Sri Lanka. Sustainability 12: doi:10.3390/su12208317.
Hameed, A., Ahmed, M. Z., Hussain, T., Aziz, I., Ahmad, N., Gul, B. and Nielsen, B. L. (2021). Effects of salinity stress on chloroplast structure and function. Cells 10: doi:10.3390/ cells10082023.
Hasanuzzaman, M., Bhuyan, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A. and Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8: doi:10.3390/antiox8090384.
Huang, X., Li, W., Wang, J., Li, Q., Shen, Y., Cheng, Y., Tiange, L., Wang, T., Wang, Y., Song, L. and Ma, Y. (2024). NaCl stress on physio-biochemical, phenolics synthesis and antioxidant system of pea (Pisum sativum L.) sprouts. LWT 210: doi:10.1016/j.lwt.2024.116821.
Hussain, I., Singh, N. B., Singh, A., Singh, H., Singh, S. C. and Yadav, V. (2017). Exogenous application of phytosynthesized nanoceria to alleviate ferulic acid stress in Solanum lycopersicum. Sci. Hortic. 214: 158-64. 
Jameel, J., Anwar, T., Siddiqi, E. H. and Alomrani, S. O. (2024). Alleviation of NaCl stress in tomato varieties by promoting morpho-physiological attributes and biochemical characters. Sci. Hortic. 323: doi:10.1016/j.scienta.2023.112496.
Kesawat, M. S., Satheesh, N., Kherawat, B. S., Kumar, A., Kim, H. U., Chung, S. M. and Kumar, M. (2023). Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signalling molecules—Current perspectives and future directions. Plants 12:  doi:10. 3390/plants12040864.
Kumar, P. and Sharma, P. K. (2020). Soil salinity and food security in India. Front. Sustain. Food Syst. 4: doi:10.3389/fsufs.2020.533781.
Ma, N. L., Che Lah, W. A., Abd. Kadir, N., Mustaqim, M., Rahmat, Z., Ahmad, A., Lam, S. D. and Ismail, M. R. (2018). Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections. PLoS One 13: doi:10.1371/journal.pone.0192732.
Mahmoud, A. W. M., Ayad, A. A., Abdel-Aziz, H. S., Williams, L. L., El-Shazoly, R. M., Abdel-Wahab, A. and Abdeldaym, E. A. (2022). Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil. Plants 11: doi:10.3390/plants11192599.
Maiti, R. R. K. and Singh, V. P. (2021). A review on recent research in okra (Abelmoschus esculentus L.). Farm. Manage. 6: 77-107.
Naqve, M., Wang, X., Shahbaz, M., Fiaz, S., Naqvi, W., Naseer, M., Mahmood, A. and Ali, H. (2021). Foliar spray of alpha-tocopherol modulates antioxidant potential of okra fruit under salt stress. Plants 10: doi:10.3390/plants10071382.
Pérez-Gálvez, A., Viera, I. and Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants 9: doi:10.3390/antiox9060505.
Qu, M., Huang, X., Shabala, L., Fuglsang, A. T., Yu, M. and Shabala, S. (2024). Understanding ameliorating effects of boron on adaptation to salt stress in Arabidopsis. Plants 13: doi:10.3390/plants13141960.
Saberi Riseh, R., Ebrahimi-Zarandi, M., Tamanadar, E., Moradi Pour, M. and Thakur, V. K. (2021). Salinity stress: toward sustainable plant strategies and using plant growth-promoting rhizobacteria encapsulation for reducing it. Sustainability 13: doi:10.3390/su132212758.
Sharma, P., Gautam, A., Kumar, V. and Guleria, P. (2022). In vitro exposed magnesium oxide nanoparticles enhanced the growth of legume Macrotyloma uniflorum. Environ. Sci. Pollut. Res. 29: 13635-45. doi:10.1007/s11356-021-16828-5.
Sharma, P., Kumar, V., Khosla, R. and Guleria, P. (2020). Exogenous naringenin improved digestible protein accumulation and altered morphology via VrPIN and auxin redistribution in Vigna radiata. 3 Biotech. 10: 1-14. doi:10.1007/s13205-020-02428-6.
Suraj Kala (2024). Effect of salt stress on relative membrane injury, lipid peroxidation content and reactive oxygen species content of isabgol (Plantago ovata Forsk.) genotypes. Res. Crop. 25: 160-64.
Wang, X., Chen, Z. and Sui, N. (2024). Sensitivity and responses of chloroplasts to salt stress in plants. Front. Plant Sci. 15: doi:10.3389/fpls.2024.1374086.
Waqas, M., Ali, N., Ashraf, M. Y., Usman, S., Shah, A. A., Raja, V. and El-Sheikh, M. A. (2024). Impact of iron sulfate (FeSO4) foliar application on growth, metabolites and antioxidative defense of Luffa cylindrica (Sponge gourd) under salt stress. Sci. Rep. 14: doi:10.1038/s41598-024-77182-3.
Yang, Y. and Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytol. 217: 523-39. doi:10.1111/nph.14920.
Yang, Z., Wang, C., Xue, Y., Liu, X., Chen, S., Song, C., Yang, Y. and Guo, Y. (2019). Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat. Commun. 10:  doi:10.1038/s41467-019-09181-2.
Zhan, Y., Wu, Q., Chen, Y., Tang, M., Sun, C., Sun, J. and Yu, C. (2019). Comparative proteomic analysis of okra (Abelmoschus esculentus L.) seedlings under salt stress. BMC Genomics 20: 1-12. 
Zhang, Q. and Dai, W. (2019). Plant response to salinity stress. In: Stress physiology of woody plants, 1st. Edn. CRC Press, Wenhao Dai, pp. 155-73.
Zhang, X., He, P., Guo, R., Huang, K. and Huang, X. (2023). Effects of salt stress on root morphology, carbon and nitrogen metabolism, and yield of Tartary buckwheat. Sci. Rep. 13: doi:10.1038/s41598-023-39634-0.

  

Global Footprints