Loading...

Morphological assessment of spikes in novel F4:5 breeding population hybrids of winter soft wheat (Triticum aestivum L.)

Citation :- Morphological assessment of spikes in novel F4:5 breeding population hybrids of winter soft wheat (Triticum aestivum L.). Res. Crop. 26: 24-31
GHEBRIEL O DEKIN, VALERY A BURLUTSKY AND BERHANE T NEGASSI ghebrielokba@gmail.com
Address : Peoples’ Friendship University of Russia named after Patrice Lumumba, Moscow, Russia
Submitted Date : 2-01-2025
Accepted Date : 28-03-2025

Abstract

Winter wheat is a crucial cereal crop that significantly contributes to global food security. The study aimed to investigate the morphological characteristics of newly developed breeding population hybrids of winter soft wheat (F4:5), focusing on spike morphology and its implications for agronomic performance under rain-fed conditions. This research was conducted during the 2021-22 period at the Kaluga Agricultural Experimental Station in the Peremyshlsky District of the Kaluga Region. The breeding program evaluated spike traits in a diverse population, selecting 6,999 spikes from 2,060 genotypes (≥2.85 g). Seeds were sown at 500 seeds/m² in a 10 × 50 m plot. Traits were analyzed using IBM SPSS v23x64 with ANOVA and Pearson correlation. This study examined spike morphological traits in winter soft wheat, revealing strong correlations critical for breeding. Spike weight correlated highly with grain weight (r=0.97), grain number (r=0.63), and grain weight with grain number (r=0.68). Spike length positively influenced mean grain weight, increasing from 2.44 g at 7.00 cm to 3.01 g at 13.50 cm, though variability was notable (CV=16.88% at 12.00 cm). Spikelet number also correlated with mean grain weight, rising from 2.43 g at 12 spikelets to 3.10 g at 22, but with greater variability (CV=18.00%). An inverse relationship was observed between spike length and spikelet density, decreasing from 23.24 to 14.82 as length increased from 7.00 cm to 13.50 cm. These results highlight the need to balance spike traits for optimal yield and adaptability.

Keywords

Grain weight mass selection wheat spike winter soft wheat

References

Acreche, M. M. and Slafer, G. A. (2006). Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crops Res. 98: 52-59.
Ali, N. and Akmal, M. (2022). Wheat growth, yield, and quality under water deficit and reduced nitrogen supply. A review. Gesunde Pflanzen. 74: 371-83.
Alkhudaydi, T., Zhou, J. and De La lglesia, B. (2019). Spikeletfcn: Counting spikelets from infield wheat crop images using fully convolutional networks. In international conference on artificial intelligence and soft computing (pp. 3-13). Cham: Springer International Publishing. doi:10.1007/978-3-030-20912-4_1.
Ding, H., Wang, C., Cai, Y., Yu, K., Zhao, H., Wang, F., Shi, X.,  Cheng, J.,  Sun, H.,  Wu, Y., Qin, R.,  Liu, C.,  Zhao, C.,  Sun. X. and Cui, F. (2024). Characterization of a wheat stable QTL for spike length and its genetic effects on yield-related traits. BMC Plant Biol. 24:  doi:10. 1186/s12870-024-04963-3.
Diordiieva, I. P., Riabovol, L. O., Riabovol, Y. S., Serzhuk, O. P., Nakloka, I. І., Nakloka, О. P. and Karychkovska, S. P. (2022). Breeding and genetic improvement of soft winter wheat with the use of spelt wheat. Agric. Food Sci. Corpus ID: 253240916.
FAO (2022). FAO Cereal Supply and Demand Brief: FAO.
Guo, Z., Chen, D., Alqudah, A. M., Röder, M. S., Ganal, M. W. and Schnurbusch, T. (2017). Genome‐wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytologist 214: 257-70.
Faris, J. D., Zhang, Z., Garvin, D. F. and Xu, S. S. (2014). Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Mol. Genet. Genom. 289: 641-51.
Gaju, O., Reynolds, M. P., Sparkes, D. L. and Foulkes, M. J. (2009). Relationships between large‐spike phenotype, grain number, and yield potential in spring wheat. Crop Sci. 49: 961-73.
Gaju, O., Reynolds, M. P., Sparkes, D. L., Mayes, S., Ribas-Vargas, G., Crossa, J. and Foulkes, M. J. (2014). Relationships between physiological traits, grain number and yield potential in a wheat population of large spike phenotype. Field Crops Res. 164: 126-35.
Garland‐Campbell, K. A. (2022). Club Wheat–A Review of club wheat history, improvement, and spike characteristics in wheat. Plant Br. Rev. 46: 421-65.
Golovko, A. S. and Kuvshinova, E. K. (2022). Cultivation efficiency of new varieties of winter soft wheat in the north-eastern zone of the Krasnodar Territory. In BIO Web of Conferences (Vol. 52, pp. 00003). EDP Sciences. doi:10.1051/bioconf/20225200003.
Guo, Z., Zhao, Y., Röder, M. S., Reif, J. C., Ganal, M. W., Chen, D. and Schnurbusch, T. (2018). Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Sci. Rep. 8: 1-10.
Hristov, N., Mladenov, N., Kondić-Špika, A., Marjanović-Jeromela, A., Jocković, B. and Jaćimović, G. (2011). Effect of environmental and genetic factors on the correlation and stability of grain yield components in wheat. Genetika-Belgrade 43: 141-52.
Iftikhar, R., Khaliq, I., Ijaz, M. and Rashid, M. A. R. (2012). Association analysis of grain yield and its components in spring wheat (Triticum aestivum L.). Am.-Eur. J. Agric. Environ. Sci. 12: 389-92.
Khyber, J. A., Soomro, F., Sipio, W. D., Wahid, A., Baloch, J. K. S., Soothar, M. K. and Ali, Z. (2019). Evaluation of bread wheat (Triticum aestivum L.) genotypes for drought tolerance through selection indices. J. Hort. Plant Res. 7: doi.org/10.18052/www.scipress.com/JHPR. 7.40.
Kumar, M., Yadav, R., Gaikwad, K. B., Babu, P., Bainsla, N. K., Dharmateja, P., Chaudhary, A. A. and Ansari, R. (2022). Deciphering the environmental impact on spike architectural traits for grain yield consolidation in bread wheat (T. aestivum L.). Saudi J. Biol. Sci. 29: 2800-10. doi:10.1016/j.sjbs.2022.01.007.
Li, C., Bai, G., Carver, B. F., Chao, S. and Wang, Z. (2016). Mapping quantitative trait loci for plant adaptation and morphology traits in wheat using single nucleotide polymorphisms. Euphytica 208: 299-312.
Lin, F., Li, C., Xu, B., Chen, J., Chen, A., Hassan, M. A. and Li, J. (2023). Late spring cold reduces grain number at various spike positions by regulating spike growth and assimilate distribution in winter wheat. The Crop Journal. 11: 1272-78.
Patwa, N. and Penning, B. W. (2023). Genetics of a diverse soft winter wheat population for pre-harvest sprouting, agronomic, and flour quality traits. Front. Plant Sci. 14:  doi:10.3389/fpls.2023.1137808.
Poudel, M. R., Bhusal, P., Lamsal, K., Kafle, K. Ghimire, P., Ghimire, M., Rijal, A. and Lamsal, N. (2024). Influence of drought conditions on yield attributing characters and yield of wheat genotypes. Farm. Manage. 9: 12-17.
Pradhan, S., Babar, M. A., Robbins, K., Bai, G., Mason, R. E., Khan, J., Shahi, D., Avci, M., Guo, J., Hossain, M., Bhatta, M. M., Mergoum, M., Asseng, S., Amand, P. S,. Gezan, S., Baik, B., Blount, A. and Bernardo, A. (2019). Understanding the genetic basis of spike fertility to improve grain number, harvest index, and grain yield in wheat under high temperature stress environments. Front. Plant sci. 10: doi:10.3389/fpls.2019.01481.
Reynolds, M., Foulkes, M. J., Slafer, G. A., Berry, P., Parry, M. A., Snape, J. W. and Angus, W. J. (2009). Raising yield potential in wheat. J. Exp. Bot. 60: 1899-918.
Shachai, N. F., Al-Azawi, N. M., Kadhim, J. J., Ramanova, E. V. and Kozyrev, S. G. (2024). Study of morphological traits and their relationship of yield in different genotypes of soft wheat. Res. Crop. 25: 403-08.
Shewry, P. R. and Hey, S. J. (2015). The contribution of wheat to human diet and health. Food Energy Secure. 4: 178-202.
Slafer, G. A., Savin, R., Pinochet, D. and Calderini, D. F. (2021). Wheat. In: Crop physiology case histories for major crops: Academic Press. pp: 98-163. 
Slafer, G. A., Andrade, F. H. and Cirilo, A. (2005). Yield components and compensation in wheat: a review. Field Crops Res. 92: 1-12.
Tiwari, U., Singh, S. V., Singh, R. K., Nageshwar, Saini, P. K., Mourya, A. K. and Saini, E. (2023). Study on genetic components of grain yield and its contributing characters in bread wheat (Triticum aestivum L.). Crop Res. 58: 69-75.
Towfiq, S. I., Hama-Amin, T. N., Mahmood, H. N. and Aziz, O. K. (2020). Comparative study for six durum wheat cultivars (Triticum durum L.) conducted during five growing seasons for grain yield and its components. Appl. Ecol. Environ. Res. 18. 30-36
You, J., Liu, H., Wang, S., Luo, W., Gou, L., Tang, H., Ma, J., et al. (2021). Spike density quantitative trait loci detection and analysis in tetraploid and hexaploidy wheat recombinant inbred line populations. Frontiers in Plant Sci. 12:796397. doi:10.3389/fpls.2021.796397.
Yousaf, M. I., Akhtar, N., Mumtaz, A., Akbar, W., Javeed, H. M., Bhatti, M. H. and Mehmood, A. (2017). Contribution of spike-related traits for grain yield in spring wheat. J. Agric. Basic Sci. 2: 30-36.
Zheng, X., Yu, Z., Yu, F. and Shi, Y. (2022). Grain-filling characteristics and yield formation of wheat in two different soil fertility fields in the Huang–Huai–Hai Plain. Front. Plant Sci. 13: doi:10.3389/fpls.2022.932821.
Zhou, H., Riche, A. B., Hawkesford, M. J., Whalley, W. R., Atkinson, B. S., Sturrock, C. J. and Mooney, S. J. (2021). Determination of wheat spike and spikelet architecture and grain traits using X-ray computed tomography imaging. Plant Methods 17: 1-9.

Global Footprints