Al-Akhras, M. A. H., Al-Quraan, N. A., Abu-Aloush, Z. A., Mousa, M. S., Alzoubi, T., Makhadmeh, G. N., Donmez, O. and Al-Jarrah, K. (2024). Impact of magnetized water on seed germination and seedling growth of wheat and barley. Results Eng. 22: doi:10.1016/j.rineng.2024.101991.
Bera, I., O’Sullivan, M., Flynn, D. and Shields, D. C. (2023). Relationship between protein digestibility and the proteolysis of legume proteins during seed germination. Molecules 28: doi:10.3390/molecules28073204.
Bulmer, M. G. and Harrison, T. K. (1996). The Statistician. J. R. Stat. Soc. Series D. 16: 217.
Collier, E. S., Harris, K. L., Bendtsen, M., Moshtaghian, H., Bryngelsson, S. and Niimi, J. (2024). Perceptions of processed food as unhealthy: Heuristic strength, prevalence, and potential implications for the protein shift. Future Foods 10: doi:10.1016/j.fufo.2024.100445.
Dragičević, V., Kratovalieva, S., Dumanovi, Z., Dimov, Z. and Kravić, N. (2015). Variations in level of oil, protein, and some antioxidants in chickpea and peanut seeds. Chem. Biol. Technol. Agric. 2: 1-6.
Drebee, H. A. and Razak, N. A. A. (2018). Measuring the efficiency of colleges at the university of Al-Qadisiyah-Iraq: A data envelopment analysis approach. J. Ekon Malaysia 52: 153–66.
Gong, M., Chen, B. O., Li, Z. G. and Guo, L. H. (2001). Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J. Plant Physiol. 158: 1125–30.
Haj Sghaier, A., Tarnawa, Á., Khaeim, H., Kovács, G. P., Gyuricza, Cs. and Kende, Z. (2022). The effects of temperature and water on the seed germination and seedling development of rapeseed (Brassica napus L.). Plants 11: doi:10.3390/plants11212819.
Islas-Flores, T., Guillén, G., Islas-Flores, I., San Román-Rom, C., Sánchez, F., Loza-Tavera, H., Bearer, E. L. and Villanueva, M. A. (2009). Germination behaviour, biochemical features and sequence analysis of the RACK1/arcA homolog from Phaseolus vulgaris. Physiol. Plant. 137: 264–80.
Kaur, R. and Prasad, K. (2023). Elucidation of temperature dependent hydration behaviour of chickpea seeds: Prerequisite for germination. Biocatal. Agric. Biotechnol. 50: doi:10.1016/j.bcab.2023.102669.
Khaeim, H., Kende, Z., Balla, I., Gyuricza, Cs., Eser, A. and Tarnawa, Á. (2022a). The effect of temperature and water stresses on seed germination and seedling growth of wheat (Triticum aestivum L.). Sustainability 14: doi:10.3390/su14073887.
Khaeim, H., Kende, Z., Jolánkai, M., Kovács, G. P., Gyuricza, Cs. and Tarnawa, Á. (2022b). Impact of temperature and water on seed germination and seedling growth of maize (Zea mays L.). Agronomy 12: doi:10.3390/agronomy12020397.
Kim, S. M., Aung, T. and Kim, M. J. (2022). Optimization of germination conditions to enhance the antioxidant activity in chickpea (Cicer arietinum L.) using response surface methodology. Korean J. Food Preserv. 29: 632–44.
Lin, Y., Chen, T., Liu, S., Cai, Y., Shi, H., Zheng, D., Lan, Y., Yue, X. and Zhang, L. (2022). Quick and accurate monitoring peanut seedlings emergence rate through UAV video and deep learning. Smart Agric. Technol. 197: doi:10.1016/j.compag.2022.106938.
Moreno, L., Lamb, M. C., Butts, C. L., Sorensen, R. B., Tubbs, R. S., Monfort, W. S., Grey, T. L. and Pilon, C. (2024). Drought alters the physiological quality of runner-type peanut seeds during seed formation. Environ. Exp. Bot. 228: doi:10.1016/j.envexpbot.2024.106009.
Perea-Moreno, M. Á., Manzano-Agugliaro, F., Hernandez-Escobedo, Q. and Perea-Moreno, A. J. (2018). Peanut shell for energy: properties and its potential to respect the environment. Sustainability 10: doi:10.3390/su10093254.
Samineni, S., Mahendrakar, M. D., Shankar, N., Hotti, A., Chand, U., Rathore, A. and Gaur, P. M. (2022). Impact of heat and drought stresses on grain nutrient content in chickpea: Genome-wide marker-trait associations for protein, Fe and Zn. Environ. Exp. Bot. 194: doi:10.1016/j.envexpbot.2021.104688.
Seefeldt, S. S., Kidwell, K. K. and Waller, J. E. (2002). Base growth temperatures, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the us pacific northwest. Field Crops Res. 75: 47–52.
Tarnawa, Á., Kende, Z., Haj Sghaier, A., Kovács, G. P., Gyuricza, Cs. and Khaeim, H. (2023). Effect of abiotic stresses from drought, temperature, and density on germination and seedling growth of barley (Hordeum vulgare L.). Plants 12: doi:10.3390/plants12091792.
Thakur, P. S., Chatterjee, A., Rajput, L. S., Rana, S., Bhatia, V. and Prakash, S. (2022). Laser biospeckle technique for characterizing the impact of temperature and initial moisture content on seed germination. Opt. Lasers Eng. 153: doi:10.1016/j. optlaseng.2022.106999.
Xue, X., Du, S., Jiao, F., Xi, M., Wang, A., Xu, H., Jiao, Q., Zhang, X., Jiang, H., Chen, J. and Wang, M. (2021). The regulatory network behind maize seed germination: effects of temperature, water, phytohormones, and nutrients. Crop J. 4: 718-24. doi:10.1016/j.cj.2020.11.005.
Bera, I., O’Sullivan, M., Flynn, D. and Shields, D. C. (2023). Relationship between protein digestibility and the proteolysis of legume proteins during seed germination. Molecules 28: doi:10.3390/molecules28073204.
Bulmer, M. G. and Harrison, T. K. (1996). The Statistician. J. R. Stat. Soc. Series D. 16: 217.
Collier, E. S., Harris, K. L., Bendtsen, M., Moshtaghian, H., Bryngelsson, S. and Niimi, J. (2024). Perceptions of processed food as unhealthy: Heuristic strength, prevalence, and potential implications for the protein shift. Future Foods 10: doi:10.1016/j.fufo.2024.100445.
Dragičević, V., Kratovalieva, S., Dumanovi, Z., Dimov, Z. and Kravić, N. (2015). Variations in level of oil, protein, and some antioxidants in chickpea and peanut seeds. Chem. Biol. Technol. Agric. 2: 1-6.
Drebee, H. A. and Razak, N. A. A. (2018). Measuring the efficiency of colleges at the university of Al-Qadisiyah-Iraq: A data envelopment analysis approach. J. Ekon Malaysia 52: 153–66.
Gong, M., Chen, B. O., Li, Z. G. and Guo, L. H. (2001). Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J. Plant Physiol. 158: 1125–30.
Haj Sghaier, A., Tarnawa, Á., Khaeim, H., Kovács, G. P., Gyuricza, Cs. and Kende, Z. (2022). The effects of temperature and water on the seed germination and seedling development of rapeseed (Brassica napus L.). Plants 11: doi:10.3390/plants11212819.
Islas-Flores, T., Guillén, G., Islas-Flores, I., San Román-Rom, C., Sánchez, F., Loza-Tavera, H., Bearer, E. L. and Villanueva, M. A. (2009). Germination behaviour, biochemical features and sequence analysis of the RACK1/arcA homolog from Phaseolus vulgaris. Physiol. Plant. 137: 264–80.
Kaur, R. and Prasad, K. (2023). Elucidation of temperature dependent hydration behaviour of chickpea seeds: Prerequisite for germination. Biocatal. Agric. Biotechnol. 50: doi:10.1016/j.bcab.2023.102669.
Khaeim, H., Kende, Z., Balla, I., Gyuricza, Cs., Eser, A. and Tarnawa, Á. (2022a). The effect of temperature and water stresses on seed germination and seedling growth of wheat (Triticum aestivum L.). Sustainability 14: doi:10.3390/su14073887.
Khaeim, H., Kende, Z., Jolánkai, M., Kovács, G. P., Gyuricza, Cs. and Tarnawa, Á. (2022b). Impact of temperature and water on seed germination and seedling growth of maize (Zea mays L.). Agronomy 12: doi:10.3390/agronomy12020397.
Kim, S. M., Aung, T. and Kim, M. J. (2022). Optimization of germination conditions to enhance the antioxidant activity in chickpea (Cicer arietinum L.) using response surface methodology. Korean J. Food Preserv. 29: 632–44.
Lin, Y., Chen, T., Liu, S., Cai, Y., Shi, H., Zheng, D., Lan, Y., Yue, X. and Zhang, L. (2022). Quick and accurate monitoring peanut seedlings emergence rate through UAV video and deep learning. Smart Agric. Technol. 197: doi:10.1016/j.compag.2022.106938.
Moreno, L., Lamb, M. C., Butts, C. L., Sorensen, R. B., Tubbs, R. S., Monfort, W. S., Grey, T. L. and Pilon, C. (2024). Drought alters the physiological quality of runner-type peanut seeds during seed formation. Environ. Exp. Bot. 228: doi:10.1016/j.envexpbot.2024.106009.
Perea-Moreno, M. Á., Manzano-Agugliaro, F., Hernandez-Escobedo, Q. and Perea-Moreno, A. J. (2018). Peanut shell for energy: properties and its potential to respect the environment. Sustainability 10: doi:10.3390/su10093254.
Samineni, S., Mahendrakar, M. D., Shankar, N., Hotti, A., Chand, U., Rathore, A. and Gaur, P. M. (2022). Impact of heat and drought stresses on grain nutrient content in chickpea: Genome-wide marker-trait associations for protein, Fe and Zn. Environ. Exp. Bot. 194: doi:10.1016/j.envexpbot.2021.104688.
Seefeldt, S. S., Kidwell, K. K. and Waller, J. E. (2002). Base growth temperatures, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the us pacific northwest. Field Crops Res. 75: 47–52.
Tarnawa, Á., Kende, Z., Haj Sghaier, A., Kovács, G. P., Gyuricza, Cs. and Khaeim, H. (2023). Effect of abiotic stresses from drought, temperature, and density on germination and seedling growth of barley (Hordeum vulgare L.). Plants 12: doi:10.3390/plants12091792.
Thakur, P. S., Chatterjee, A., Rajput, L. S., Rana, S., Bhatia, V. and Prakash, S. (2022). Laser biospeckle technique for characterizing the impact of temperature and initial moisture content on seed germination. Opt. Lasers Eng. 153: doi:10.1016/j. optlaseng.2022.106999.
Xue, X., Du, S., Jiao, F., Xi, M., Wang, A., Xu, H., Jiao, Q., Zhang, X., Jiang, H., Chen, J. and Wang, M. (2021). The regulatory network behind maize seed germination: effects of temperature, water, phytohormones, and nutrients. Crop J. 4: 718-24. doi:10.1016/j.cj.2020.11.005.