Agafonov V. A. and Boyarkin E. V. (2020). Fodder dignity of agrocenoses of Sudanese grass with legumes in the Pre-Baikal region. Bulletin of the Buryat State Agricultural Academy named after V. R. Filippov. 3: 14–20. [in Russian].
Bartolac L. K., Lowe J. L., Koustas G., Grupen C. G. and Sjoblom, C. (2018). Effect of different penetrating and non-penetrating cryoprotectants and media temperature on the cryosurvival of vitrified in vitro produced porcine blastocysts. Anim. Sci. J. 89: 1230–39. doi:10.1111/asj.12996.
Engelmann, F. (2011). Use of biotechnologies for the conservation of plant biodiversity. Vitr. Cell. Dev. Biol. 47: 5–16. [CrossRef]
GOST 12038-84 (2011). Interstate standard for Seeds of agricultural crops. Methods for determining germination. The publication is official. Moscow: StandartInform. pp.32
Gurtovenko, A. A. and Anwar, J. (2007). Modulating the structure and properties of cell membranes: The molecular mechanism of dimethyl sulfoxide. J. Phy. Chem. B. 111: 10453-60.
He, F., Liu, W., Zheng, S., Zhou, L., Ye, B. and Qi, Z. (2012). Ion transport through dimethyl sulfoxide (DMSO) induced transient water pores in cell membranes. Mol. Membr. Biol. 29: 107–13.
Hubálek, Z. (2003). Protectants used in the cryopreservation of microorganisms. Cryobiology. 46:205-29. doi:10.1016/s0011-2240(03)00046-4.
Jaiswal, A. N. and Vagga A. (2022). Cryopreservation: A Review Article. Cureus. 14: doi:10. 7759/cureus.31564.
Kapustin, S. I., Volodin, A. B. and Kapustin, A. S. (2018). Productivity of the Sudan grass of the Sputnitsa variety in the steppe zone of the North Caucasus. Agronomia. 5: 102-04. [in Russian].
Kostyaev, A. A., Martusevich, A. K. and Andreev, A. A. (2016). Toxicity of cryoprotectants and cryopreservants for blood and bone marrow components (review article). Med. Sci. 6: 54-74.
Kovtunova, N. A., Kovtunov, V. V., Romanyukin, A. E. and Shishova, E. A. (2021). New high-yielding varieties of Sudanese grass. Forage Prod. 4: 31-34. [in Russian].
Madieva, A. N. and Ishmuratova, M. Yu. (2023). Recommendations for cryopreservation of the seed material of the Sudanese grass. Publishing house of Karaganda University named after academician E.A. Buketov. Karaganda. pp: 25. [in Russian].
Mandumpal, J. B., Kreck, C. A. and Mancera, R. L. (2010). A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions. Phys. Chem. Chem. Phys. 13: 3839–42.
Mursaliyeva, V., Imanbayeva, A. and Parkhatova, R. (2020). Seed germination of Allochrusa gypsophiloides (Caryophyllaceae), an endemic species from Central Asia and Kazakhstan. Seed Sci. Technol. 48: 289-95. doi:10.15258/sst.2020.48.2.15.
Panis, B. (2019). Sixty years of plant cryopreservation: From freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic. 1–8. [CrossRef]. doi:10.17660/ActaHortic.2019.1234.1.
Panis, B. and Lambardi, M. (2005). Status of cryopreservation technologies in plants (crops and forest trees). The role of biotechnology. 5-7 March, Villa Gualino, Turin, Italy. pp: 43-54.
Pegg, D. E. (2007). Principles of cryopreservation. Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology. Totowa (NJ): Humana Press. 368: 39–75. doi:10.1007/978-1-59745-362-2_3.
Romadanova, N. V., Karasholakova, L. N., Makhmutova, I. A., Kabulova, F. D., Abidkulova, K. T. and Kushnarenko, S. V. (2019). Preservation of genetic material of some barberry species in a cryobank. Bull. Karaganda Univ. Ser. Biol. Med. Geog. 3: 20-26. [in Russian].
Romadanova, N. V., Zheksembekova, M. A., Aralbaeva, M. M., Tolegen, T. E., Koken, T. E., Nurmanov, M. M. and Kushnarenko, S. V. (2020). Catalog of in vitro, cryobank collection and seedlings of apple, hazelnut and walnut. Catalogue of seedlings, Almaty, Institute of Plant Biology and Biotechnology, pp: 58. [in Russian].
Romadanova, N., Kushnarenko, S. and Karasholakova, L. (2017). Development of a common PVS2 vitrification method for cryopreservation of several fruit. In Vitro Cell. Dev. Biol. 53: 382-93.
Sambu, S. (2015). A Bayesian approach to optimizing cryopreservation protocols. Peer J. 3: doi:10.7717/peerj.1039.
Sergushkina, M. I., Popyvanov, D. V., Solomina, O. N., Zaitseva, O. O. and Khudyakov, A. N. (2023). Modern features of cryopreservation of plant cell cultures. In: XVIII All-Russian scientific and practical conference with international participation, «Ecology of the native land: problems and solutions», April 24-25, pp.312-16. [in Russian].
Suleimenova, S. B. and Mikhailova O. P. (2024). Productivity and nutritional value of Sudanese grass in Western Siberia. In: Proc. of the International Scientific and practical conference: Synthesis of Science and Education as a mechanism of transition to a post-industrial society, April 18, Sterlitamak, Russian Federation. pp. 166-69. [in Russian].
Wang, M. R., Bi, W., Shukla, M. R., Ren, L., Hamborg, Z., Blystad, D. R., Saxena, P. K. and Wang, Q. C. (2021). Epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants. Plants 10: 1-19. [CrossRef] [PubMed]
Whaley, D., Damyar, K., Witek, R. P., Mendoza, A., Alexander, M. and Lakey, J. R. T (2021) Cryopreservation: An overwiew of principles and cell-specific considerations. Cell Transplant. 30: 1-12
Wowk, B. (2007). How cryoprotectants work. Cryonics. scottsdale (AZ): Alcor life extension foundation. Cited. pp: 3-7.
Yong, K. W., Pingguan-Murphy, B., Xu, F., Abas, W. A., Choi, J. R., Omar, S. Z., Azmi, M. A., Chua, K. H., and Safwani, W. K. (2015). Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci. Rep. 5: doi:10.1038/ srep09596.
Zamecnik, J., Faltus, M., and Bilavcik, A. (2021). Vitrification solutions for plant cryopreservation: Modification and properties. Plants 10: 1-17. doi:10.3390/ plants10122623.
Bartolac L. K., Lowe J. L., Koustas G., Grupen C. G. and Sjoblom, C. (2018). Effect of different penetrating and non-penetrating cryoprotectants and media temperature on the cryosurvival of vitrified in vitro produced porcine blastocysts. Anim. Sci. J. 89: 1230–39. doi:10.1111/asj.12996.
Engelmann, F. (2011). Use of biotechnologies for the conservation of plant biodiversity. Vitr. Cell. Dev. Biol. 47: 5–16. [CrossRef]
GOST 12038-84 (2011). Interstate standard for Seeds of agricultural crops. Methods for determining germination. The publication is official. Moscow: StandartInform. pp.32
Gurtovenko, A. A. and Anwar, J. (2007). Modulating the structure and properties of cell membranes: The molecular mechanism of dimethyl sulfoxide. J. Phy. Chem. B. 111: 10453-60.
He, F., Liu, W., Zheng, S., Zhou, L., Ye, B. and Qi, Z. (2012). Ion transport through dimethyl sulfoxide (DMSO) induced transient water pores in cell membranes. Mol. Membr. Biol. 29: 107–13.
Hubálek, Z. (2003). Protectants used in the cryopreservation of microorganisms. Cryobiology. 46:205-29. doi:10.1016/s0011-2240(03)00046-4.
Jaiswal, A. N. and Vagga A. (2022). Cryopreservation: A Review Article. Cureus. 14: doi:10. 7759/cureus.31564.
Kapustin, S. I., Volodin, A. B. and Kapustin, A. S. (2018). Productivity of the Sudan grass of the Sputnitsa variety in the steppe zone of the North Caucasus. Agronomia. 5: 102-04. [in Russian].
Kostyaev, A. A., Martusevich, A. K. and Andreev, A. A. (2016). Toxicity of cryoprotectants and cryopreservants for blood and bone marrow components (review article). Med. Sci. 6: 54-74.
Kovtunova, N. A., Kovtunov, V. V., Romanyukin, A. E. and Shishova, E. A. (2021). New high-yielding varieties of Sudanese grass. Forage Prod. 4: 31-34. [in Russian].
Madieva, A. N. and Ishmuratova, M. Yu. (2023). Recommendations for cryopreservation of the seed material of the Sudanese grass. Publishing house of Karaganda University named after academician E.A. Buketov. Karaganda. pp: 25. [in Russian].
Mandumpal, J. B., Kreck, C. A. and Mancera, R. L. (2010). A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions. Phys. Chem. Chem. Phys. 13: 3839–42.
Mursaliyeva, V., Imanbayeva, A. and Parkhatova, R. (2020). Seed germination of Allochrusa gypsophiloides (Caryophyllaceae), an endemic species from Central Asia and Kazakhstan. Seed Sci. Technol. 48: 289-95. doi:10.15258/sst.2020.48.2.15.
Panis, B. (2019). Sixty years of plant cryopreservation: From freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic. 1–8. [CrossRef]. doi:10.17660/ActaHortic.2019.1234.1.
Panis, B. and Lambardi, M. (2005). Status of cryopreservation technologies in plants (crops and forest trees). The role of biotechnology. 5-7 March, Villa Gualino, Turin, Italy. pp: 43-54.
Pegg, D. E. (2007). Principles of cryopreservation. Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology. Totowa (NJ): Humana Press. 368: 39–75. doi:10.1007/978-1-59745-362-2_3.
Romadanova, N. V., Karasholakova, L. N., Makhmutova, I. A., Kabulova, F. D., Abidkulova, K. T. and Kushnarenko, S. V. (2019). Preservation of genetic material of some barberry species in a cryobank. Bull. Karaganda Univ. Ser. Biol. Med. Geog. 3: 20-26. [in Russian].
Romadanova, N. V., Zheksembekova, M. A., Aralbaeva, M. M., Tolegen, T. E., Koken, T. E., Nurmanov, M. M. and Kushnarenko, S. V. (2020). Catalog of in vitro, cryobank collection and seedlings of apple, hazelnut and walnut. Catalogue of seedlings, Almaty, Institute of Plant Biology and Biotechnology, pp: 58. [in Russian].
Romadanova, N., Kushnarenko, S. and Karasholakova, L. (2017). Development of a common PVS2 vitrification method for cryopreservation of several fruit. In Vitro Cell. Dev. Biol. 53: 382-93.
Sambu, S. (2015). A Bayesian approach to optimizing cryopreservation protocols. Peer J. 3: doi:10.7717/peerj.1039.
Sergushkina, M. I., Popyvanov, D. V., Solomina, O. N., Zaitseva, O. O. and Khudyakov, A. N. (2023). Modern features of cryopreservation of plant cell cultures. In: XVIII All-Russian scientific and practical conference with international participation, «Ecology of the native land: problems and solutions», April 24-25, pp.312-16. [in Russian].
Suleimenova, S. B. and Mikhailova O. P. (2024). Productivity and nutritional value of Sudanese grass in Western Siberia. In: Proc. of the International Scientific and practical conference: Synthesis of Science and Education as a mechanism of transition to a post-industrial society, April 18, Sterlitamak, Russian Federation. pp. 166-69. [in Russian].
Wang, M. R., Bi, W., Shukla, M. R., Ren, L., Hamborg, Z., Blystad, D. R., Saxena, P. K. and Wang, Q. C. (2021). Epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants. Plants 10: 1-19. [CrossRef] [PubMed]
Whaley, D., Damyar, K., Witek, R. P., Mendoza, A., Alexander, M. and Lakey, J. R. T (2021) Cryopreservation: An overwiew of principles and cell-specific considerations. Cell Transplant. 30: 1-12
Wowk, B. (2007). How cryoprotectants work. Cryonics. scottsdale (AZ): Alcor life extension foundation. Cited. pp: 3-7.
Yong, K. W., Pingguan-Murphy, B., Xu, F., Abas, W. A., Choi, J. R., Omar, S. Z., Azmi, M. A., Chua, K. H., and Safwani, W. K. (2015). Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci. Rep. 5: doi:10.1038/ srep09596.
Zamecnik, J., Faltus, M., and Bilavcik, A. (2021). Vitrification solutions for plant cryopreservation: Modification and properties. Plants 10: 1-17. doi:10.3390/ plants10122623.