Loading...

Mineralogical characterization of soils in the Savanna ecosystem  

Citation :- Mineralogical characterization of soils in the Savanna ecosystem. Res. Crop. 26: 76-85
FAKOREDE B M, BABALOLA T S, ILORI A O A, FASINA A S AND SHITTU O S bolajiofgod@gmail.com
Address : Department of Soil Science and Land Resources Management, Federal University Oye-Ekiti, Ekiti State, Nigeria
Submitted Date : 19-10-2024
Accepted Date : 22-03-2025

Abstract

The mineralogical composition of soil plays a crucial role in determining soil fertility and agricultural potential. Given the highly weathered and nutrient-poor nature of Savanna soils, understanding their mineralogical composition is essential for developing sustainable land management strategies that enhance nutrient availability, support crop production, and improve long-term agricultural productivity in the region. This study investigates the mineralogical composition of soils in the Savanna region across three locations: Ikole (IK), Oye (OY), and Erinmope (ER). These locations have distinct climatic conditions that influence mineral weathering and soil properties. Fieldwork involved sampling from profile pits across these sites, followed by laboratory analyses, including particle size distribution, pH, organic carbon, and exchangeable cations. X-ray diffraction (XRD) analysis was used to determine the mineralogical composition. The primary minerals identified in all pedons included quartz, along with traces of orthoclase (K-feldspar), albite (Na-feldspar), and muscovite (mica), which varied across different soil profiles and depths. Kaolinite, a secondary mineral, was also present as a product of the weathering of feldspars and aluminosilicate minerals. The findings revealed that kaolinite dominates the soils in Ikole, indicating intense weathering and leaching typical of tropical climates, which contribute to moderate soil fertility. In contrast, Oye soils exhibited a higher presence of quartz, reflecting significant physical weathering. In Erinmope, quartz dominated the surface horizons, while kaolinite increased with depth, alongside iron oxides such as hematite and goethite, suggesting prolonged weathering processes. These variations in mineral composition significantly influence soil structure, nutrient-holding capacity, and response to agricultural practices. This study contributes to the development of sustainable agricultural practices, soil conservation strategies, and ecosystem sustainability.

Keywords

Diffraction kaolinite mineralogy quartz savanna sustainable 

References

Adekiya, A. O., Ajayi, G. A., Adegbite, K. A., Imhanze, F. L., and Ibaba, A. L. (2024). Mineralogical compositions of soils under three geological formations in some parts of Ogun state, Nigeria and their agricultural potentials. Sci. Rep. 14: doi:10.1038/s41598-024-57397-0.
Andrade, G. R., Cuadros, J., Partiti, C. S., Cohen, R. and Vidal-Torrado, P. (2018). Sequential mineral transformation from kaolinite to Fe-illite in two Brazilian mangrove soils. Geoderma 309: 84-99.
Babalola, T. S., Fasina, A. S., Kadiri, W. O. J., Ibitoye-Ayeni, N. K. and Omonile, T. (2019). Variation of soil morphological properties along a lithosequence on basement complex geology of Nigeria. FU Lafia J. Sci. Technol. 5: 55–65.
Babalola, T. S., Fasina, E. A. S., Oyewole, M. O., Ajayi, S. O., Adeyemo, J. A. and Amoloja, O. (2023). Assessment of weathering intensity and pedogenesis of lithosequence located in two agroecological zones of Nigeria. 8: 383-87. doi:10.46792/fuoyejet. v8i3.1049.
Begna, M. (2020). Review on effect of toposequence on soil physicochemical properties. Ethiopian J. Environ. Stud. Manag. 13: doi:10.54536/ajec. v2i3.2209.
Blume, H. P., Brummer, G. W., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I. and Wilke, B. M. (2016). Inorganic soil components—minerals and rocks. Scheffer / Schachtschabel Soil Science, pp: 7-53.
Bouyoucos, G. F. (1965). Hydrometer method improved for making particle size analysis of soils. Soil Sci. Soc. Am. Proc. 26: 464-65. doi.org/10.2134/agronj1962.00021962005400050028x.
Bremner, J. M. and Mulvaney, C. S. (1982). Nitrogen-total. In: Methods of soil analysis. Part 2. Chemical and microbiological properties, Page, A. L., Miller, R. H. and Keeney, D. R. Eds., American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, 595-24.
Claudio, C., Iorio, E. D., Liu, Q., Jiang, Z, and Barron, V. (2017). Iron oxide nanoparticles in soils: environmental and agronomic importance. J. Nanosci. Nanotechnol. 17: 4449–46.
Da Costa, P. Y., Nguetnkam, J. P., Mvoubou, C. M., Togbe, K. A., Ettien, J. B. and Yao-Kouame, A. (2015). Old landscapes, pre-weathered materials, and pedogenesis in tropical Africa: How can the time factor of soil formation be assessed in these regions? Quaternary Int. 376: 47-74.
Datta, S. C., Ghosh, S. K. and Das, D. (2020). Soil mineralogy and clay minerals. The Soils of India. pp: 109-27.
De Oliveira, V. A., Santos, G. G., Ker, J. C., Couto, E. G., Jacomine, P. K., Correa, G. R. and Schaefer, C. E. (2023). Soils of Cerrados, the Brazilian Savannas. In The Soils of Brazil Cham: Springer International Publishing. pp: 129-73.
Dimkpa, C. O., Singh, U., Bindraban, P. S., Adisa, I. O., Elmer, W. H., Gardea-Torresdey, J. L. and White, J. C. (2019). Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size-specific response of soybean to micronutrients exposure. Sci. Total Environ. 665: 606-16.
Dontsova, K., Balogh-Brunstad, Z. and Chorover, J. (2020). Plants as drivers of rock weathering. Biogeochemical cycles: Ecological drivers and environmental impact. pp: 33-58.
Egli, M. and Mirabella, A. (2021). The origin and formation of clay minerals in Alpine soils. Hydrogeology, chemical weathering, and soil formation. pp: 121-37.
Fasina, A. S., Omolayo, F. O., Ajayi, O. S. and Falodun, A. A. (2007). Influence of land use on soil properties of three mapping units in Southwestern Nigeria-Implications for sustainable soil management. Res. J. Appl. Sci. 2: 879-83.
Havlin, J. L. (2020). Soil: Fertility and nutrient management. In: Landscape and land capacity. CRC Press. pp: 251-65. 
Hewitt, A. E., Balks, M. R. and Lowe, D. J. (2021). Semiarid Soils. The Soils of Aotearoa New Zealand. pp: 231-47.
Iderawumi, A. M. and Kamal, T. O. (2022). Green manure for agricultural sustainability and improvement of soil fertility. Farm. Manage. 7: 1-8.
IITA (1979). Selected methods for soil and plant analysis. IITA (International Institute of Tropical Agriculture). Manual Series No. 1, Ibadan.
Kome, G. K., Enang, R. K., Tabi, F. O. and Yerima, B. P. K. (2019). Influence of clay minerals on some soil fertility attributes: a review. Open J. Soil Sci. 9: 155-88.
Korneeva E. A. (2024). Agroforestry in arid areas for reducing the impact of drought and soil degradation on agricultural production. Res. Crop. 25: 696-701.
Krahl, L. L., Marchi, G., Paz, S. P. A., Angélica, R. S., Sousa-Silva, J. C., Valadares, L. F. and Martins, E. D. S. (2022). Increase in cation exchange capacity by the action of maize rhizosphere on Mg or Fe biotite-rich rocks. Pesquisa Agropecuária Tropical 52: doi:10.1590/1983-40632022v5272376.
Kumari, N. and Mohan, C. (2021). Basics of clay minerals and their characteristic properties. Clay Clay Miner. 24: 1-29
Liao, J., Sun, X., Wu, Z., Sa, R., Guan, Y., Lu, Y., Li, D., Liu, Y., Deng, Y and Pan, Y. (2019). Fe-Mn (oxyhydr) oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific. Ore Geol. Rev. 112: doi: 10.1016/j.oregeorev.2019.103044.
Ling, C., Liu, Z., Yu, X., Zhao, Y., Siringan, F. P., Le, K. P., Sathiamurthy, E., You, C. F. and Chen, K. (2024). Clay minerals control silicon isotope variations of fine-grained river sediments: Implication for the trade-off between physical erosion and chemical weathering. Chem. Geol. 662: doi: 10.1016/j.chemgeo.2024.122249.
Maniyunda, L. M., Raji, B. A., Odunze, A. C. and Malgwi, W. B. (2015). Forms and content of sesquioxides in soils on basement complexes of the northern Guinea Savanna of Nigeria. J. Soil Sci. Environ. Manag. 6: 148-57.
Manning, D. A. (2022). Mineral stabilities in soils: how minerals can feed the world and mitigate climate change. Clay Clay Miner. 57(1): 31-40.
Mibei, G. (2014). Introduction to the types and classification of rocks. Geothermal Development Company. doi:10.13140/RG.2.2.26431.12962.
Moorhead, K. (2015). A pedogenic view of ecosystem restoration. Ecol. Restor. 33: 341-51. 
Ndzana, G. M., Huang, L., Wang, J. B. and Zhang, Z. Y. (2018). Characteristics of clay minerals in soil particles from an argillic horizon of Alfisol in central China. Appl. Clay Sci. 151: 148-56.
Nelson, D. W. and Sommer, L. E. (1982). Total carbon, organic carbon and organic matter. methods of soil analysis, Part 2. Chemical and microbiological properties, 2nd Edition. ASA-SSSA, Madison. pp. 595-79.
Patel, C. J., Sisodiya, D. B., Patel, A. R. and Bumbadiya, N. R.  (2021), Effect of different levels of nitrogen, phosphorus and bio-fertilizers on growth and yield of irrigated wheat (Triticum aestivum) under conserve moisture condition. Crop Res. 56: 8-13.
Peech, M. and McDevit, W. F. (1951). Discussion of the paper on the validity of interpretations of potentiometrically measured soil pH, by Coleman et al. (1950). Soil Sci. Soc. Am. Proc. 15: 112–14.
Rezapour, S. and Samadi, A. (2014). The spatial distribution of potassium status and clay mineralogy in relation to different land-use types in a calcareous Mediterranean environment. Arabian J. Geosci. 7: 1037-47.
Robins, C. R., Buck, B. J., Spell, T. L., Soukup, D. and Steinberg, S. (2014). Testing the applicability of vacuum-encapsulated 40Ar/39Ar geochronology to pedogenic palygorskite and sepiolite. Quaternary Geochronol. 20: 8-22.
Rosati, A., Borek, R. and Canali, S. (2021). Agroforestry and organic agriculture. Agrofor. Syst. 95: 805-21.
Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use Manag. 38: 39-67.
Soil Survey Staff (2014). Keys to Soil Taxonomy, 12th ed., USDA-Natural Resources Conservation Service, Washington, DC.
Tamale, J. (2014). Soil characterization in the landslide-prone area Bumwalukani, Eastern Uganda (Doctoral dissertation, Vrije Universiteit Brussel, Belgium).
Tijani, M. N. (2023). Geology of Nigeria. In Landscapes and landforms of Nigeria Cham: Springer Nature Switzerland. pp: 3-32. 
Traore, S., Thiombiano, L., Bationo, B. A., Kögel-Knabner, I. and Wiesmeier, M. (2020). Organic carbon fractional distribution and saturation in tropical soils of West African Savannas with contrasting mineral composition. Catena 190: doi: 10.1016/j.catena.2020.104550.
Tsozue, D., Basga, S. D. and Nzeukou, A. N. (2020). Spatial variation of soil weathering processes in the tropical high reliefs of Cameroon (Central Africa). Eurasian J. Soil Sci. 9: 92-104.
Wilford, J. R. (2014).  New regolith mapping approaches for old Australian landscapes (Doctoral dissertation). 
Wilson, M. J. (2020). Dissolution and formation of quartz in soil environments: a review. Soil Sci. Annual 71: 3-14. doi:10.37501/soilsa/122398.
Yuan, G., Cao, Y., Schulz, H. M., Hao, F., Gluyas, J., Liu, K., Yang, T., Wang, Y., Xi, Kelai. and Li, F. (2019). A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. Earth-sci. Rev. 191: 114-40. doi: 10.1016/j.earscirev.2019.02.004.
Zhang, Z. Y., Huang, L., Liu, F., Wang, M. K., Fu, Q. L. and Zhu, J. (2016). Characteristics of clay minerals in soil particles of two alfisols in China. Appl. Clay Sci. 120: 51-60.
Zhu, Y., Duan, G., Chen, B., Peng, X., Chen, Z. and Sun, G. (2014). Mineral weathering and element cycling in soil-microorganism-plant system. Sci. China Earth Sci. 57: 888-96.

Global Footprints