Loading...

Influence of iron and manganese forms on pedogenesis in residual soils of the Savanna ecosystem 


Citation :- Influence of iron and manganese forms on pedogenesis in residual soils of the Savanna ecosystem. Res. Crop. 26: 68-75
FAKOREDE B. M., BABALOLA T. S., AJAYI S. O. AND FASINA A. S. bolajiofgod@gmail.com
Address : Department of Soil Science and Land Resources Management, Federal University Oye-Ekiti, Ekiti State, Nigeria
Submitted Date : 19-10-2024
Accepted Date : 22-03-2025

Abstract

Soil formation in the Savanna region is a complex process influenced by various factors, with iron (Fe) and manganese (Mn) playing significant roles in pedogenesis. Understanding how these elements affect soil structure, nutrient availability, and weathering intensity is essential for improving soil management and boosting agricultural productivity. This study investigates the influence of Fe-Mn forms on pedogenesis in residual soils within this region. Soil samples were collected from various pedogenic horizons at the study sites and analyzed in the laboratory. The major methods used to assess soil formation and development included Dithionite-Citrate-Bicarbonate extractable iron and manganese (Fed and Mnd), Ammonium Oxalate-extractable iron and manganese (Feox and Mnox), and Sodium Pyrophosphate-extractable iron and manganese (Fep and Mnp). The results indicate varying values of Fed, Feox, Fep, Mnd, Mnox, Mnp, and their active ratios (Feox/Fed and Mnox/Mnd) across the pedons. Higher values obtained using the Fep method suggest that it extracted more Fe and Mn than Fed and Feox (Fep > Fed > Feox). However, higher concentrations of Mnd and Mnp were observed at the surface horizons in all pedons at Erinmope-Ekiti (Southern Guinea Savanna) compared to Ikole-Ekiti and Oye-Ekiti (Derived Savanna), indicating a greater degree of soil formation and pedogenically older soils. Therefore, higher concentrations of Fe-Mn forms accelerate pedogenesis, while lower concentrations result in slower soil development. The study also suggests that Fe-Mn forms strongly influence soil pH and nutrient availability, further shaping soil formation and development.

Keywords

Dithionite oxalate pedogenesis pyrophosphate residual  


References

Azadi, A., Baghernejad, M., Gholami, A. and Shakeri, S. (2021). Forms and distribution pattern of soil Fe (Iron) and Mn (Manganese) oxides due to long-term rice cultivation in Fars Province Southern Iran. Comm. Soil Sci. Plant Anal. 52: 1894-911.
Babalola, T. S. and Fasina, A. S. (2006). Variation of the properties of soils derived from granitic parent materials in southwestern Nigeria. J. Res. Dev. 5: 1-14.
Babalola, T. S. and Fasina, A. S. (2020). Pedogenic forms of iron and manganese and its implication on soil genesis over a lithosequence in Nigeria. Nigerian J. Soil Sci. 30: 42-53. doi:10.36265/njss.2020.300207.
Babalola, T. S., Fasina, A. S., Ayodele, F. G., Abadunmi, T., and Adeyemo, A. J. (2021). Assessment of Fertility and Degradation Status of Soils in Federal University Oye-Ekiti, Nigeria. Innovations, No. 78.
Blume, H. P., Brümmer, G. W., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I. and Wilke, B. M. (2016). Soil development and soil classification. Scheffer/SchachtschabelSoil Science, pp: 385-89.
Brady, N. C., and Weil, R. R. (2008). The Nature and Properties of Soils Prentice Hall. 
Chen, H., Xia, Y., Huang, H., Gan, Y., Tao, X., Liang, C. and Liu, X. (2017). Highly dispersed surface-active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR. Chem. Eng. J. 330: 1195-202.
Choudhary, O. P. and Kharche, V. K. (2018). Soil salinity and sodicity. Soil science: an introduction, 12: pp. 353–84.
Cronan, C. S., and Cronan, C. S. (2018). Mineral weathering: Ecosystem biogeochemistry: element cycling in the forest landscape, pp: 87-100.
Da Silva, L. F., Fruett, T., Zinn, Y. L., Inda, A. V. and Nascimento, P. C. (2019). The genesis, morphology, and mineralogy of planosols developed from different parent materials in Southern Brazil. Geoderma 341: 46–58.
Fasina, A. S., Shittu, O. S., Omotoso, S. O. and Adenikinju, A. P. (2006). Response of cocoa to different fertilizer regimes on some selected soils of Southwestern Nigeria. Agric. J. 1: 272-76.
Ferro-Vazquez, C., Novoa-Munoz, J. C., Klaminder, J., Gomez-Armesto, A. and Martínez-Cortizas, A. (2020). Comparing podzolization under different bioclimatic conditions. Geoderma 377: doi:10.1016/j.geoderma.2020.114581.
IITA (1979). Selected methods for soil and plant analysis. IITA (International Institute of Tropical Agriculture). Manual Series No. 1, Ibadan.
Jofre, I., Matus, F., Mendoza, D., Najera, F. and Merino, C. (2021). Manganese-oxidizing Antarctic bacteria (Mn-Oxb) release reactive oxygen species (ROS) as secondary Mn (II) oxidation mechanisms to avoid toxicity. Biology 10: doi:10.3390/biology10101004.
McKeague, J. A. (1967). An evaluation of 0.1 m pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Canadian J. Soil Sci. 47: doi.org/10.4141/cjss67-017.
Mayanna, S., Peacock, C. L., Schäffner, F., Grawunder, A., Merten, D., Kothe, E. and Buchel, G. (2015). Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. Chemical Geology, 402: 6-17.
Mihajlovic, J., and Rinklebe, J. (2018). Rare earth elements in German soils: A review. Chemosphere 205: 514-23.
Moens, C., Dondeyne, S., Panagea, I. and Smolders, E. (2022). Depth profile of colloidal iron in the pore water of an Albic Podzol. European J. Soil Sci. 73: doi:10.1111/ejss.13305.
Oyebiyi, O. O. (2024). Distribution and forms of iron and aluminum oxides in tropical soils of central and southwestern Nigeria. Environ. Earth Sci. 83: doi:10.1007/s12665-024-11420-9.
Pal, D. K., Wani, S. P., Sahrawat, K. L. and Srivastava, P. (2014). Red ferruginous soils of tropical Indian environments: A review of the pedogenic processes and their implications for edaphology. Catena 121: 260–78.
Pavlovic, P., Kostic, N., Karadzic, B., Mitrovic, M., Pavlovic, P., Kostic, N. and Mitrovic, M. (2017). Order of Automorphic Soils. The Soils of Serbia, pp: 101–56.
Perez-Lopez, R., Carrero, S., Cruz-Hernandez, P., Asta, M. P., Macas, F., Canovas, C. R. and Nieto, J. M. (2018). Sulfate reduction processes in salt marshes affected by phosphogypsum: geochemical influences on contaminant mobility. J. Hazard. Mater. 350: 154–61.
Pintaldi, E., Viglietti, D., D’Amico, M. E., Magnani, A. and Freppaz, M. (2019). Abiotic parameters and pedogenesis as controlling factors for soil C and N cycling along an elevational gradient in a subalpine larch forest (NW Italy). Forests 10: doi:10.3390/f10080614.
Sairam, M., Maitra, S., Raghava, C. V., Krishna, T. G., Gaikwad, D. J., Sahoo, U. and Ray, S. (2023). Efficient crop residue management under conservation agriculture for improving soil quality: A review. Farm. Manage. 8: 59-71.
Shaheen, S. M. and Rinklebe, J. (2014). Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 228: 142-59.
Singh, R., Gupta, S., Khare, A. K. and Tiwari, S. (2024). Heavy metal contamination through wastewater irrigation on the soil and vegetables: Impact on the nutrient content and health risks. Crop Res. 59: 52-59.
Van Rythoven, A., Clark, J., Ray, J. and Felsman, J. (2021). Normative indexes calibrated by automated mineralogy to model a rare earth deposit. Ore Geol. Rev. 139: doi:10.1016/j. oregeorev.2021.104540.
Vasu, D., Karthikeyan, K., Atole, S., Paul, R., Gaikwad, S. S., Humadevi, K., Shabana, S., Neha, G., Roshani, N., Tiwary, P. and Chandran, P. (2020). Elucidating the geogenic and pedogenic pathways of soil formation in Peninsular India-Signatures of Past Landscape Modifications. Catena 192: doi:10.1016/j.catena.2020.104591.
Vermeire, M. L., Cornu, S., Fekiacova, Z., Detienne, M., Delvaux, B. and Cornelis, J. T. (2016). Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chem. Geol. 446: 163–74. doi: 10.1016/j.chemgeo.2016.06.00.
Uzoho, B., Okoli, N., & Ekwugha, U. (2019). Impact of Texture on Sesquioxide Distribution in Southeastern Nigerian Soils. International Journal of Environment, 8(1), 43-58.
Viet, H. Q. (2023). Influence of 96 years of mineral and organic fertilization on selected soil properties: a case study from long-term field experiments in Skierniewice, central Poland. Soil Sci. Annu.74: doi:10.37501/soilsa/161945.
Wang, X., Yao, J., Wang, S., Pan, X., Xiao, R., Huang, Q. and Qu, R. (2018). Photo-transformation of estrogens is mediated by Mn (III), not by reactive oxygen species, in the presence of humic acids. Chemosphere 201: 224-33.
Xu, X., Chen, C., Wang, P., Kretzschmar, R. and Zhao, F. J. (2017). Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environ. Pollut. 231: 37-47.

Global Footprints