Loading...

Foliar application of carbon dots improves the growth and yield of lettuce (Lactuca sativa L.)  


Citation :- Foliar application of carbon dots improves the growth and yield of lettuce (Lactuca sativa L.) . Crop Res. 60: 415-420
D. K. TRAN, T. X. P. TRAN AND D. H. TRAN tdanghoa@hueuni.edu.vn
Address : University of Agriculture and Forestry, Hue University, 102 Phung Hung Street, Phu Xuan Ward, Hue City, Vietnam
Submitted Date : 23-09-2025
Accepted Date : 4-11-2025

Abstract

Carbon dots (CDs), discovered in 2004, are an emerging member of the carbon nanomaterial family. With their promising properties, CDs have found numerous applications across a wide range of fields. In recent years, their use in agriculture has attracted increasing attention; however, studies on their effects on plant yield and quality remain limited. To address this gap, a field experiment was conducted during the winter season (September–November 2024) at an organic farm in Huong An commune, Hue City, Vietnam (N16°28′21.81″; E107°31′36.996″). The experiment evaluated the effects of CDs applied at seven concentrations (10, 20, 30, 40, 50 and 60 ppm) on lettuce (Lactuca sativa L.) growth, yield traits, and soil physicochemical properties. The findings demonstrated that CD application had a positive effect on lettuce growth and yield, with the highest yield (23.73 t/ha) observed at 60 ppm. Furthermore, CD application at 60 ppm increased soil organic matter by 0.13% and improved both the physical and chemical properties of the soil, resulting in increases in pH (KCl), total nitrogen, total phosphorus and total potassium by 0.45, 0.055, 0.026 and 0.033%, respectively, compared with the treatment without CD application. These results suggest that the foliar application of carbon dots can provide multiple benefits for lettuce production while simultaneously improving soil quality.

Keywords

Carbon dots carbon nano materials Lactuca sativa lettuce soil fertility 


References

Afe, A. I. and Oluleye, F. (2017). Response of okra (Abelmuschus esculenthus (L.) Moench) to combined organic and inorganic foliar fertilizers. Int. J. Recycl. Org. Waste Agric. 6: 189-93.
Demir, Z. (2019). Effect of vermicompost on soil physicochemical properties and letture (Lactuca sativa var. crispa) yield in greenhose under different soil water regimes. Commun. Soil Sci. Plant Anal. 50: 2151-68.
Doan, T. H. C., Nguyen, D. T. and Le, D. T. (2010). Study on nitrogen, phosphorus and potassium application rates for lettuce cultivation in net house at Bao Loc town, Lam Dong province. Hue Uni. J. Sci. 63: 5-14. (in Vietnamese)
Gao, J., Zhu, M., Huang, H., Liu, Y. and Kang, Z. (2017). Advances, challenges and promises of carbon dots. Inorg. Chem. Front. 4: 1963-86.
Gong, Y. and Zhao, J. (2018). Small carbon quantum dots, large photosynthesis enhancement. J. Agric. Food Chem. 66: 9159-61.
Hu, J., W., Wu. X., Zhang, H., Wang, Y., Liu, J., Yang, Y., Tao, S. and Wang, X. (2022). Carbon dots can strongly promote photosynthesis in lettuce (Lactuca sativa L.). Environ. Sci.: Nano 9: 1530-40.
Kabay, T., Alp, Y. and Sensoy, S. (2018). Effect of vermicompost application on some plant characteristics in lettuce (Lactuca saviva L.). Frecenius Environ. Bull. 27: 9942-48.
Kou, E., Yao, Y., Yang, X., Song, S., Li, W., Kang, Y., Qu, S., Dong, R., Pan, X., Li, D., Zhang, H. and Lei, B. (2021). Regulation mechanisms of carbon dots in the development of lettuce and tomato. ACS Sustain. Chem. Eng. 9: 944-53.
Le, X.D.N., Khuong, A.S. Cao, N.T.L. and Ngo, K.Q.  (2024). Detection of Fe3+ ions using carbon dots derived from Gac fruit (Momordica cochinchinensis Spreng). MRS Adv. 9: 1337-44.
Li, G., Xu, J. and Xu, K. (2023). Physiological functions of carbon dots and their applications in Agriculture: A Review. Nanomaterials 13: doi:10.3390/nano13192684.
Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., Lei, B., Hu, C. and Liu, Y. (2020). A review on the effects of carbon dots in plant systems. Mater. Chem. Front. 4: 437-48.
Mala, S. A. P. (2022). Effects of vermicompost on the growth and antioxidant property of grand rapid lettuce (Lactuca sativa L.). AJASET 6: 82-86.
Monika, C., Priyamvada, S., Gajendra, P. and SinghBrijesh, R. (2024). Structural features of carbon dots and their agricultural potential. ACS Omega 9: 4166-85.
Nepal, J., Xin, X., Maltais-Landry, G., Ahmad, W., Pereira, J., Santra, S., Wright, A., Ogram, A., Stofella, P. J. and He, Z. (2023). Carbon nanomaterials are a superior soil amendment for sandy soils than biochar based on impacts on lettuce growth, physiology and soil biochemical quality. NanoImpact 31: doi:10.1016/j.impact.2023.100480.
Nguyen, V. D. and Tran, D. H. (2020). Effects of organic foliar nutrient application on lettuce production in Central Vietnam. Res. Crop. 21: 129-32.
Nida, A., Saira, Z., Zainab, R., Muhammad, M. I., Rattan, L. and Muhammad, A. F. (2025). Carbon quantum dots as versatile nanomaterials for improving soil health and plant stress tolerance: a comprehensive review. Planta 262: doi:10.1007/s00425-025-04758-2.
Pandey, R. R. and Chusuei, C. C. (2021). Carbon nanotubes, graphene, and carbon dots as electrochemical biosensing composites. Molecules 26: doi:10.3390/molecules26216674.
Ranjan, P., Khan, R., Gogoi, S., Murali, S., Sadique, M. A., Yadav, S. and Khan, A. (2022).  Carbon dots – an overview. In: Carbon Dots in Agricultural Systems- Strategies to Enhance Plant Productivity. (Khan, R., Murali, S., Gogoi, S. Eds). pp 1-19, Elsevier. doi: 10.1016/B978-0-323-90260-1.00007-3.
Sahu, C., Gaikwad, D. J., Nanda, S., Dash, G. K., Maitra, S., Munda, S. C. and Mullapudi, S. (2025). Comparative performance of lettuce cultivars Batavia and Romain in nutrient film technique under hydroponics system. Crop Res. 60: 61-67.
Sharma, R. and Kumar, V. (2024). Nano enabled agriculture for sustainable soil. Waste Manag. Bull. 2: 152-161
Theourn, S., Pheap, S., Lam, B., Williams, J. and Ro, S. (2021). Combination of vermicompost and mineral fertilizer on growth and yield of romaine lettuce (Lactuca sativa var. longifolia Lam). AJAES. 2021: 35-40.
Tran, T. X. P., Tran, D. K. and Tran, D. H. (2024). Effect of vermicompost application on growth and yield of lettuce (Lactuca sativa L.) under organic cultivation. Res. Crop. 25: 92-96.
Trinh, K. Q., To, T. T. H. and Pham, T. M. H. (2015). Test of imported lettuce varieties and fertilize using for peospected lettuce variety. Sci. Tech. J. Agric. Rural Develop. 13: 204-210. (in Vietnamese).
United Nations (2022). World Population Prospects 2022 - Summary of Results. United Nations, New York. pp. 52.
Van Duyn, M. A. and Pivonka, E. (2000). Overview of the health benefits of fruit and vegetable consumption for the dietetics professional. J. Am. Diet. Assoc. 99: 1241-48.
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K. and Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc.126: 12736-37.
Yao, B., Huang, H., Liu, Y. and Kang, Z. (2019). Carbon dots: A small conundrum. Trends Chem. 1: 235-46.
Zhao, Y., Zhao, P., Luo, J., Tian, L., Tian, Z. and Ndayambaje, J. (2019). Effects of different types of nano-carbon biological fertilizers on the growth and quality of crops. Nanosci. Nanotechnol. Lett. 11: 1644-50.

Global Footprints