Amgain, L. P., Poudel, M. R., Adhikari, S. and Dhakal, D. (2024). Trends of agro-climatic variability and multi-year prediction of rice and wheat yields under the changing climatic scenarios using DSSAT crop model in Nepalese western Terai. Res. Crop. 25: 369-78.
Chengzhi, C., Jidong, C. and Wenfang, C. (2024). Potential yields of two staple cereal crops worldwide under global warming. Farm. Manage. 9: 1-11.
Dongling, J., Wenhui, X., Zhiwei, S., Lijun, L., Junfei, G., Hao, Z., Harrison, M. T., Ke, L., Zhiqin, W., Weilu, W. and Jianchang, Y. (2023). Translocation and distribution of carbon-nitrogen in relation to rice yield and grain quality as affected by high temperature at early panicle initiation stage. Rice Sci. 30: 598-612. doi:10.1016/j.rsci.2023.06.003.
Fanish, S. A. and Ragavan, T. (2018). Evaluation of growth and yield performance of aerobic rice under different irrigation intervals in furrow irrigated raised bed (FIRB) system of cultivation. Farm. Manage. 3: 13-18.
Farhad, M., Kumar, U., Tomar, V., Bhati, P. K., Krishnan, J. N., Barek, V., Brestic, M. and Hossain, A. (2023). Heat stress in wheat: a global challenge to feed billions in the current era of the changing climate. Front. Sustain. Food Syst. 7: doi:10.3389/fsufs.2023.1203721.
Iqbal, J., Yousaf, U., Asgher, A., Dilshad, R., Qamar, F. M., Bibi, S., Rehman, S. U. and Haroon, M. (2023). Sustainable rice production under biotic and abiotic stress challenges. In: Prakash, C. S., Fiaz, S., Nadeem, M. A., Baloch, F. S. and Qayyum, A. (Eds.), Sustainable Agriculture in the Era of the OMICs Revolution. Cham: Springer International Publishing. pp: 241-68.
Jiang, M., Guo, K., Wang, J., Wu, Y., Shen, X. and Huang, L. (2023). Current status and prospects of rice canopy temperature research. Food Energy Secur. 12: doi:10.1002/fes3.424.
Khanal, D., Bastakoti, B. and Banjade, D. (2024). A review: elevated nighttime temperature impacts on rice. Int. J. Plant Soil Sci. 36: 437-46. doi:10.26832/24566632.2024.0903030.
Lu, F., Feng, B., Chen, L., Qiu, J. and Wei, X. (2025). How does rice cope with high-temperature stress during its growth and development, especially at the grain-filling stage? Agron. 15: doi:10.3390/agronomy15030623.
Phung, T. D. (2024). Climate change impacts on rice cultivation paddies in the Plain of Reeds, Vietnam. Res. Crop. 25: 247-52.
Rajput, J., Singh, A. K., Singh, S., Singh, S., Singh, S., Singh, A. K. and Yadav, R. K. (2023). Physiological impact of heat stress on wheat varieties at different growth stages. Plant Arch. 23: 462-67. doi:0.51470/PLANTARCHIVES.2023.v23.no2.076.
Ren, H., Bao, J., Gao, Z., Sun, D., Zheng, S. and Bai, J. (2023). How rice adapts to high temperatures. Front. Plant Sci. 14: 1-12. doi:10.3389/fpls.2023.1137923.
Sher, A., Noor, M. A., Li, H. X., Nasir, B., Manzoor, M. A., Hussain, S., Zhang, J., Riaz, M. W. and Hussain, S. (2024). Heat stress effects on legumes: challenges, management strategies and future insights. Plant Stress 13: doi:10.1016/j.stress.2024.100537.
Shrestha, S., Mahat, J., Shrestha, J., Madhav, K. C. and Paudel, K. (2022). Influence of high-temperature stress on rice growth and development. A review. Heliyon 8: doi:10.1016/j.heliyon.2022.e12651.
Suzuki, N. (2023). Fine tuning of ROS, redox and energy regulatory systems associated with the functions of chloroplasts and mitochondria in plants under heat stress. Int. J. Mol. Sci. 24: doi:10.3390/ijms24021356.
Tian, W., Mu, Q., Gao, Y., Zhang, Y., Wang, Y., Ding, S., Aloryi, K. D., Okpala, N. E. and Tian, X. (2024). Micrometeorological monitoring reveals that canopy temperature is a reliable trait for the screening of heat tolerance in rice. Front. Plant Sci. 15: doi:10.3389/fpls.2024.1326606.
Veronica, N., Sujatha, T. and Ramana Rao, P. V. (2022). Physiological characterization for abiotic stress tolerance in rice (Oryza sativa) genotypes. Crop Res. 57: 285-91.
Yoshida, S. (1972). Physiological aspects of grain yield. Annu. Rev. Plant Physiol. 23: 437-64. doi:10.1146/annurev.pp.23.060172.002253.
Chengzhi, C., Jidong, C. and Wenfang, C. (2024). Potential yields of two staple cereal crops worldwide under global warming. Farm. Manage. 9: 1-11.
Dongling, J., Wenhui, X., Zhiwei, S., Lijun, L., Junfei, G., Hao, Z., Harrison, M. T., Ke, L., Zhiqin, W., Weilu, W. and Jianchang, Y. (2023). Translocation and distribution of carbon-nitrogen in relation to rice yield and grain quality as affected by high temperature at early panicle initiation stage. Rice Sci. 30: 598-612. doi:10.1016/j.rsci.2023.06.003.
Fanish, S. A. and Ragavan, T. (2018). Evaluation of growth and yield performance of aerobic rice under different irrigation intervals in furrow irrigated raised bed (FIRB) system of cultivation. Farm. Manage. 3: 13-18.
Farhad, M., Kumar, U., Tomar, V., Bhati, P. K., Krishnan, J. N., Barek, V., Brestic, M. and Hossain, A. (2023). Heat stress in wheat: a global challenge to feed billions in the current era of the changing climate. Front. Sustain. Food Syst. 7: doi:10.3389/fsufs.2023.1203721.
Iqbal, J., Yousaf, U., Asgher, A., Dilshad, R., Qamar, F. M., Bibi, S., Rehman, S. U. and Haroon, M. (2023). Sustainable rice production under biotic and abiotic stress challenges. In: Prakash, C. S., Fiaz, S., Nadeem, M. A., Baloch, F. S. and Qayyum, A. (Eds.), Sustainable Agriculture in the Era of the OMICs Revolution. Cham: Springer International Publishing. pp: 241-68.
Jiang, M., Guo, K., Wang, J., Wu, Y., Shen, X. and Huang, L. (2023). Current status and prospects of rice canopy temperature research. Food Energy Secur. 12: doi:10.1002/fes3.424.
Khanal, D., Bastakoti, B. and Banjade, D. (2024). A review: elevated nighttime temperature impacts on rice. Int. J. Plant Soil Sci. 36: 437-46. doi:10.26832/24566632.2024.0903030.
Lu, F., Feng, B., Chen, L., Qiu, J. and Wei, X. (2025). How does rice cope with high-temperature stress during its growth and development, especially at the grain-filling stage? Agron. 15: doi:10.3390/agronomy15030623.
Phung, T. D. (2024). Climate change impacts on rice cultivation paddies in the Plain of Reeds, Vietnam. Res. Crop. 25: 247-52.
Rajput, J., Singh, A. K., Singh, S., Singh, S., Singh, S., Singh, A. K. and Yadav, R. K. (2023). Physiological impact of heat stress on wheat varieties at different growth stages. Plant Arch. 23: 462-67. doi:0.51470/PLANTARCHIVES.2023.v23.no2.076.
Ren, H., Bao, J., Gao, Z., Sun, D., Zheng, S. and Bai, J. (2023). How rice adapts to high temperatures. Front. Plant Sci. 14: 1-12. doi:10.3389/fpls.2023.1137923.
Sher, A., Noor, M. A., Li, H. X., Nasir, B., Manzoor, M. A., Hussain, S., Zhang, J., Riaz, M. W. and Hussain, S. (2024). Heat stress effects on legumes: challenges, management strategies and future insights. Plant Stress 13: doi:10.1016/j.stress.2024.100537.
Shrestha, S., Mahat, J., Shrestha, J., Madhav, K. C. and Paudel, K. (2022). Influence of high-temperature stress on rice growth and development. A review. Heliyon 8: doi:10.1016/j.heliyon.2022.e12651.
Suzuki, N. (2023). Fine tuning of ROS, redox and energy regulatory systems associated with the functions of chloroplasts and mitochondria in plants under heat stress. Int. J. Mol. Sci. 24: doi:10.3390/ijms24021356.
Tian, W., Mu, Q., Gao, Y., Zhang, Y., Wang, Y., Ding, S., Aloryi, K. D., Okpala, N. E. and Tian, X. (2024). Micrometeorological monitoring reveals that canopy temperature is a reliable trait for the screening of heat tolerance in rice. Front. Plant Sci. 15: doi:10.3389/fpls.2024.1326606.
Veronica, N., Sujatha, T. and Ramana Rao, P. V. (2022). Physiological characterization for abiotic stress tolerance in rice (Oryza sativa) genotypes. Crop Res. 57: 285-91.
Yoshida, S. (1972). Physiological aspects of grain yield. Annu. Rev. Plant Physiol. 23: 437-64. doi:10.1146/annurev.pp.23.060172.002253.










