Agriculture Statistic at a Glance (2023). Department of Agriculture and Farmers Welfare. Directorate of Economics and Statistics, Government of India. https://desagri.gov.in/document-report-category/agriculture-statistics-at-a-glance/ (Accessed on 26 July 2025).
Asadkhani, E., Ramroudi, M., Asgharipour, M. R. and Shahhosseini, H. R. (2025). Challenges of sustainability of rice agrosystem: Insights from energy use, ecological footprint, and greenhouse gas emissions (case study: Golestan province, Iran). Agrosyst. Geosci. Environ. 8:. doi:10.1002/ agg2.70061.
Ciolkosz, D. and Go, A. (2022). Energy use on the farm. In Regional Perspectives on Farm Energy. Springer International Publishing. pp:1-14. doi:10.1007/978-3-030-90831-7_1.
Deka, T. J., Budhiraja, B., Osman, A. I., Baruah, D. C. and Rooney, D. W. (2025). Assessing rice straw availability and associated carbon footprint for methanol production: A case study in India. Biomass Bioenergy. 194: doi:10.1016/j.biombioe.2024.107580.
Devasenapathy, P., Senthilkumar, G. and Shanmugam, P. M. (2009). Energy management in crop production. Indian J. Agron. 54: 80-90.
Dey, J. K., Debnath, A., Das, P., Sarkar, S., Das, R., Chakraborty, A., Mandal, A. K. and Debbarma, P. (2024). Energy budgeting and economic analysis of cowpea varieties under rainfed condition. Legume Res. 47: 1951-57.
Divya Vani, B. R., Ramesh, N., Manimaran, S. and Thangavel, P. (2023). Effect of organic mulches and kaolin clay foliar spray on growth, yield attributes and yield of dry land maize (Zea mays). Crop Res. 58: 29-33.
Dudhatra, M. C., Bharadiya, A. M., Makani, J. D., Patel, P. J. and Ravaliya, D. K. (2024). Screening of different groundnut genotypes/varieties against Spodoptera litura (Fab.). Farm. Manage. 9: 102-05.
Firouzi, S., Nikkhah, A. and Rosentrater, K. A. (2017). An integrated analysis of non-renewable energy use, GHG emissions, carbon efficiency of groundnut sole cropping and groundnut-bean intercropping agro-ecosystems. Environ. Prog. Sustain. Energy. 36: 1832-39.
Gomez, K. A. and Gomez, A. A. (1984). Statistical procedures for agricultural research, 2nd Edn. John Wiley & Sons, Philippines. pp: 99.
Guo, Z., Ye, W., Wang, H., He, W., Tian, Y., Hu, G. and Zhuge, Y. (2024). Straw and phosphorus applications promote maize (Zea mays L.) growth in saline soil through changing soil carbon and phosphorus fractions. Front. Plant Sci. 15: doi:10.3389/fpls.2024.1336300.
He, P., Xie, W., Ma, H., Huang, X., Zou, Q., Ai, D. and Yang, H. (2023). Straw mulching combined with phosphorus fertilization increased photosynthesis rate and grain yield of wheat due to reduced stomatal and mesophyll limitations. Crop Sci. 63: 3482-97.
Hemingway, C., Vigne, M. and Aubron, C. (2023). Agricultural greenhouse gas emissions of an Indian village – Who’s to blame: crops or livestock? Sci. Total Environ. 856: doi:10.1016/j.scitotenv.2022.159145.
Jat, R. A., Jain, N. K., Yadav, R. S., Reddy, K. K., Choudhary, R. R., Zala, P. V., Meena, H. N., Sarkar, S., Rathore, S. S., Sharma, G. K., Kumawat, A., Jinger, D. and Jha, P. K. (2023). System-based integrated nutrient management improves productivity, profitability, energy use efficiency and soil quality in peanut-wheat cropping sequence in light black soils. Sustainability 15: doi:10.3390/su15021361.
Kamal, A. K. D., Ram, P., Sharma, A. and Dhaka, B. K. (2023). Effect of phosphorus and sulphur levels on nutrient content and uptake of groundnut (Arachis hypogaea L.). Biol. Forum. 15: 1023-26.
Kaur, N., Vashist, K. K. and Brar, A. S. (2021). Energy and productivity analysis of maize-based crop sequences compared to rice-wheat system under different moisture regimes. Energy 216: 119286. doi:10.1016/j.energy.2020.119286.
Kaur, S., Sidana, B. K., Kaur, S. and Biswas, A. (2025). Carbon footprint reduction in Punjab agriculture: Analyzing impacts and strategies in major crop rotations. Energy Nexus 18: doi.org/10.1016/j.nexus.2025.100424.
Kumar, D. P., Shankar, T. and Maitra, S. (2019). Growth, yield and quality of summer groundnut (Arachis hypogaea L.) as affected by graded levels of phosphorus. Int. J. Bioresour. Sci. 6: 81-86.
Lal, R. (2004). Carbon emissions from farm operations. Environ. Int. 30: 981-90.
Liu, S., Wang, L., Khan, I., Li, G., Rehman, A., Suo, R., Chang, L., Alabbosh, K. F. and Khan, K. A., (2025). Comparative study of straw mulching and interplanting patterns on water use efficiency and productivity of the maize-soybean cropping system. Environ. Dev. Sustain. 27: 16883-911.
Ma, B. L., Liang, B. C., Biswas, D. K., Morrison, M. J. and McLaughlin, N. B. (2012). The carbon footprint of maize production as affected by nitrogen fertilizer and maize–legume rotations. Nutr. Cycl. Agroecosyst. 94: 15-31.
Maitra, S., Sahoo, U., Sairam, M., Gitari, H. I., Rezaei-Chiyaneh, E., Battaglia, M. L. and Hossain, A. (2023). Cultivating sustainability: A comprehensive review on intercropping in a changing climate. Res. Crop. 24: 702-15.
Mandal, K. G., Saha, K. P., Ghosh, P. K., Hati, K. M. and Bandyopadhyay, K. K. (2002). Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass Bioenergy. 23: 337-45.
Minh, T. X., Thanh, N. C., Thin, T. H., Giang, N. T. H. and Tieng, N. T. (2022). Effect of mulching on growth and yield of peanut (Arachis hypogaea L.) on the coastal sandy land in Nghe An Province, Vietnam. Indian J. Agric. Res. doi:10.18805/ijare.af-689.
Nassiri, S. M. and Singh, S. (2009). Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Appl. Energy 86: 1320-25.
Pandian, K., Mustaffa, M. R. A. F., Mahalingam, G., Paramasivam, A., Prince, A. J., Gajendiren, M., Mohammad, A. R. R. and Varanasi, S. T. (2024). Synergistic conservation approaches for nurturing soil, food security and human health towards sustainable development goals. J. Hazard. Mater. Adv. 16: doi:10.1016/j.hazadv.2024.100479.
Peera, P. G., Debnath, S. and Maitra, S. (2020). Mulching: Materials, advantages and crop production. In: Maitra, S., Gaikwad, D. J. and Shankar, T. (Eds.) Protected Cultivation and Smart Agriculture. New Delhi Publishers, New Delhi, India. pp: 55-66.
Rai, A., Khajuria, S. and Lata, K. (2020). Impact of front-line demonstrations in transfer of groundnut production technology in semi-arid region. Gujarat J. Ext. Edu. 31: 6-10.
Ramadhani, A. M., Nassary, E. K., Rwehumbiza, F. B., Massawe, B. H. J. and Nchimbi-Msolla, S. (2024). Impact of mulching treatments on growth, yields, and economics of common bean (Phaseolus vulgaris L.) in Eastern Tanzania. Front. Sustain. Food Syst. 8: doi:10.3389/fsufs.2024.1455206.
Sairam, M., Maitra, S., Sagar, L., Biswas, T., Bárek, V., Brestic, M. and Hossain, A. (2025). Application of precision nutrient tools for the optimization of fertilizer requirements and assessment of the growth and productivity of maize (Zea mays L.) in the northeastern Ghat of India. J. Agric. Food Res. 21: doi:10.1016/j.jafr.2025.101958.
Singh, K. P., Prakash, V., Srinivas, K. and Srivastva, A. K. (2008). Effect of tillage management on energy-use efficiency and economics of soybean (Glycine max)-based cropping systems under the rainfed conditions in north-west Himalayan region. Soil Tillage Res. 100: 78-82.
Suvana, S. and Singh, V. K. (2025). Sustainable green energy for enhanced agricultural productivity. In Modern Technology for Sustainable Agriculture. Cham: Springer Nature Switzerland. pp: 151-68.
Thakur, M. and Kumar, R. (2020). Mulching: Boosting crop productivity and improving soil environment in herbal plants. J. Appl. Res. Med. Aromatic Plants 20: doi:10.1016/j.jarmap.2020.100287.
Verma, S. and Pradhan, S. S. (2024). Effect of mulches on crop, soil and water productivity: A review. Agric. Rev. 45: 335-39.
Wang, C., Pollet, S., Howell, K. and Cornelis, J. (2025b). Placing cropping systems under suboptimal phosphorus conditions promotes plant nutrient acquisition and microbial carbon supply without compromising biomass. Soil Biol. Biochem. 204: doi:10.1016/j.soilbio.2025.109753.
Wang, H., Yang, B., Duan, C., Chang, Z. and Li, T. (2025a). Effects of straw return on soil carbon and nitrogen pools and on the diversity of microbial structures and functions. Oikos 2025: doi:10.1111/oik.10976.
Wang, H., Yang, Y., Zhang, X. and Tian, G. (2015). Carbon footprint analysis for mechanization of maize production based on life cycle assessment: A case study in Jilin Province, China. Sustainability 7: 15772-84.
West, T. O. and Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric. Ecosyst. Environ. 91: 217-32.
Xia, Y., Peñuelas, J., Sardans, J., Xiaojian, Z., Xu, L., Yang, Z., Yang, Y., Liuming, Y., Yue, K. and Fan, Y. (2024). Phosphorus addition accelerates soil organic carbon mineralization by desorbing organic carbon and increasing microbial activity in subtropical forest soils. Appl. Soil Ecol. 193: doi:10.1016/j.apsoil.2023.105166.
Yadav, D., Singh, D. V., Babu, S., Madhu, M. and Kumawat, A. (2025). Carbon farming: Innovations, potential, and challenges for sustainable future. Indian J. Agron. 70: 20-30.
Yang, Y., Long, Y., Li, S. and Liu, X. (2023). Straw return decomposition characteristics and effects on soil nutrients and maize yield. Agriculture 13: doi:10.3390/agriculture13081570.
Zhang, N., Bai, L., Wei, X., Li, T., Tang, Y., Zeng, X., Lei, Z., Wen, J. and Su, S. (2025). Promoted decomposition in straw return to double-cropped rice fields controls soil acidity, increases soil fertility and improves rice yield. Chem. Eng. J. 509: doi:10.1016/j.cej.2025.161309.
Asadkhani, E., Ramroudi, M., Asgharipour, M. R. and Shahhosseini, H. R. (2025). Challenges of sustainability of rice agrosystem: Insights from energy use, ecological footprint, and greenhouse gas emissions (case study: Golestan province, Iran). Agrosyst. Geosci. Environ. 8:. doi:10.1002/ agg2.70061.
Ciolkosz, D. and Go, A. (2022). Energy use on the farm. In Regional Perspectives on Farm Energy. Springer International Publishing. pp:1-14. doi:10.1007/978-3-030-90831-7_1.
Deka, T. J., Budhiraja, B., Osman, A. I., Baruah, D. C. and Rooney, D. W. (2025). Assessing rice straw availability and associated carbon footprint for methanol production: A case study in India. Biomass Bioenergy. 194: doi:10.1016/j.biombioe.2024.107580.
Devasenapathy, P., Senthilkumar, G. and Shanmugam, P. M. (2009). Energy management in crop production. Indian J. Agron. 54: 80-90.
Dey, J. K., Debnath, A., Das, P., Sarkar, S., Das, R., Chakraborty, A., Mandal, A. K. and Debbarma, P. (2024). Energy budgeting and economic analysis of cowpea varieties under rainfed condition. Legume Res. 47: 1951-57.
Divya Vani, B. R., Ramesh, N., Manimaran, S. and Thangavel, P. (2023). Effect of organic mulches and kaolin clay foliar spray on growth, yield attributes and yield of dry land maize (Zea mays). Crop Res. 58: 29-33.
Dudhatra, M. C., Bharadiya, A. M., Makani, J. D., Patel, P. J. and Ravaliya, D. K. (2024). Screening of different groundnut genotypes/varieties against Spodoptera litura (Fab.). Farm. Manage. 9: 102-05.
Firouzi, S., Nikkhah, A. and Rosentrater, K. A. (2017). An integrated analysis of non-renewable energy use, GHG emissions, carbon efficiency of groundnut sole cropping and groundnut-bean intercropping agro-ecosystems. Environ. Prog. Sustain. Energy. 36: 1832-39.
Gomez, K. A. and Gomez, A. A. (1984). Statistical procedures for agricultural research, 2nd Edn. John Wiley & Sons, Philippines. pp: 99.
Guo, Z., Ye, W., Wang, H., He, W., Tian, Y., Hu, G. and Zhuge, Y. (2024). Straw and phosphorus applications promote maize (Zea mays L.) growth in saline soil through changing soil carbon and phosphorus fractions. Front. Plant Sci. 15: doi:10.3389/fpls.2024.1336300.
He, P., Xie, W., Ma, H., Huang, X., Zou, Q., Ai, D. and Yang, H. (2023). Straw mulching combined with phosphorus fertilization increased photosynthesis rate and grain yield of wheat due to reduced stomatal and mesophyll limitations. Crop Sci. 63: 3482-97.
Hemingway, C., Vigne, M. and Aubron, C. (2023). Agricultural greenhouse gas emissions of an Indian village – Who’s to blame: crops or livestock? Sci. Total Environ. 856: doi:10.1016/j.scitotenv.2022.159145.
Jat, R. A., Jain, N. K., Yadav, R. S., Reddy, K. K., Choudhary, R. R., Zala, P. V., Meena, H. N., Sarkar, S., Rathore, S. S., Sharma, G. K., Kumawat, A., Jinger, D. and Jha, P. K. (2023). System-based integrated nutrient management improves productivity, profitability, energy use efficiency and soil quality in peanut-wheat cropping sequence in light black soils. Sustainability 15: doi:10.3390/su15021361.
Kamal, A. K. D., Ram, P., Sharma, A. and Dhaka, B. K. (2023). Effect of phosphorus and sulphur levels on nutrient content and uptake of groundnut (Arachis hypogaea L.). Biol. Forum. 15: 1023-26.
Kaur, N., Vashist, K. K. and Brar, A. S. (2021). Energy and productivity analysis of maize-based crop sequences compared to rice-wheat system under different moisture regimes. Energy 216: 119286. doi:10.1016/j.energy.2020.119286.
Kaur, S., Sidana, B. K., Kaur, S. and Biswas, A. (2025). Carbon footprint reduction in Punjab agriculture: Analyzing impacts and strategies in major crop rotations. Energy Nexus 18: doi.org/10.1016/j.nexus.2025.100424.
Kumar, D. P., Shankar, T. and Maitra, S. (2019). Growth, yield and quality of summer groundnut (Arachis hypogaea L.) as affected by graded levels of phosphorus. Int. J. Bioresour. Sci. 6: 81-86.
Lal, R. (2004). Carbon emissions from farm operations. Environ. Int. 30: 981-90.
Liu, S., Wang, L., Khan, I., Li, G., Rehman, A., Suo, R., Chang, L., Alabbosh, K. F. and Khan, K. A., (2025). Comparative study of straw mulching and interplanting patterns on water use efficiency and productivity of the maize-soybean cropping system. Environ. Dev. Sustain. 27: 16883-911.
Ma, B. L., Liang, B. C., Biswas, D. K., Morrison, M. J. and McLaughlin, N. B. (2012). The carbon footprint of maize production as affected by nitrogen fertilizer and maize–legume rotations. Nutr. Cycl. Agroecosyst. 94: 15-31.
Maitra, S., Sahoo, U., Sairam, M., Gitari, H. I., Rezaei-Chiyaneh, E., Battaglia, M. L. and Hossain, A. (2023). Cultivating sustainability: A comprehensive review on intercropping in a changing climate. Res. Crop. 24: 702-15.
Mandal, K. G., Saha, K. P., Ghosh, P. K., Hati, K. M. and Bandyopadhyay, K. K. (2002). Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass Bioenergy. 23: 337-45.
Minh, T. X., Thanh, N. C., Thin, T. H., Giang, N. T. H. and Tieng, N. T. (2022). Effect of mulching on growth and yield of peanut (Arachis hypogaea L.) on the coastal sandy land in Nghe An Province, Vietnam. Indian J. Agric. Res. doi:10.18805/ijare.af-689.
Nassiri, S. M. and Singh, S. (2009). Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Appl. Energy 86: 1320-25.
Pandian, K., Mustaffa, M. R. A. F., Mahalingam, G., Paramasivam, A., Prince, A. J., Gajendiren, M., Mohammad, A. R. R. and Varanasi, S. T. (2024). Synergistic conservation approaches for nurturing soil, food security and human health towards sustainable development goals. J. Hazard. Mater. Adv. 16: doi:10.1016/j.hazadv.2024.100479.
Peera, P. G., Debnath, S. and Maitra, S. (2020). Mulching: Materials, advantages and crop production. In: Maitra, S., Gaikwad, D. J. and Shankar, T. (Eds.) Protected Cultivation and Smart Agriculture. New Delhi Publishers, New Delhi, India. pp: 55-66.
Rai, A., Khajuria, S. and Lata, K. (2020). Impact of front-line demonstrations in transfer of groundnut production technology in semi-arid region. Gujarat J. Ext. Edu. 31: 6-10.
Ramadhani, A. M., Nassary, E. K., Rwehumbiza, F. B., Massawe, B. H. J. and Nchimbi-Msolla, S. (2024). Impact of mulching treatments on growth, yields, and economics of common bean (Phaseolus vulgaris L.) in Eastern Tanzania. Front. Sustain. Food Syst. 8: doi:10.3389/fsufs.2024.1455206.
Sairam, M., Maitra, S., Sagar, L., Biswas, T., Bárek, V., Brestic, M. and Hossain, A. (2025). Application of precision nutrient tools for the optimization of fertilizer requirements and assessment of the growth and productivity of maize (Zea mays L.) in the northeastern Ghat of India. J. Agric. Food Res. 21: doi:10.1016/j.jafr.2025.101958.
Singh, K. P., Prakash, V., Srinivas, K. and Srivastva, A. K. (2008). Effect of tillage management on energy-use efficiency and economics of soybean (Glycine max)-based cropping systems under the rainfed conditions in north-west Himalayan region. Soil Tillage Res. 100: 78-82.
Suvana, S. and Singh, V. K. (2025). Sustainable green energy for enhanced agricultural productivity. In Modern Technology for Sustainable Agriculture. Cham: Springer Nature Switzerland. pp: 151-68.
Thakur, M. and Kumar, R. (2020). Mulching: Boosting crop productivity and improving soil environment in herbal plants. J. Appl. Res. Med. Aromatic Plants 20: doi:10.1016/j.jarmap.2020.100287.
Verma, S. and Pradhan, S. S. (2024). Effect of mulches on crop, soil and water productivity: A review. Agric. Rev. 45: 335-39.
Wang, C., Pollet, S., Howell, K. and Cornelis, J. (2025b). Placing cropping systems under suboptimal phosphorus conditions promotes plant nutrient acquisition and microbial carbon supply without compromising biomass. Soil Biol. Biochem. 204: doi:10.1016/j.soilbio.2025.109753.
Wang, H., Yang, B., Duan, C., Chang, Z. and Li, T. (2025a). Effects of straw return on soil carbon and nitrogen pools and on the diversity of microbial structures and functions. Oikos 2025: doi:10.1111/oik.10976.
Wang, H., Yang, Y., Zhang, X. and Tian, G. (2015). Carbon footprint analysis for mechanization of maize production based on life cycle assessment: A case study in Jilin Province, China. Sustainability 7: 15772-84.
West, T. O. and Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric. Ecosyst. Environ. 91: 217-32.
Xia, Y., Peñuelas, J., Sardans, J., Xiaojian, Z., Xu, L., Yang, Z., Yang, Y., Liuming, Y., Yue, K. and Fan, Y. (2024). Phosphorus addition accelerates soil organic carbon mineralization by desorbing organic carbon and increasing microbial activity in subtropical forest soils. Appl. Soil Ecol. 193: doi:10.1016/j.apsoil.2023.105166.
Yadav, D., Singh, D. V., Babu, S., Madhu, M. and Kumawat, A. (2025). Carbon farming: Innovations, potential, and challenges for sustainable future. Indian J. Agron. 70: 20-30.
Yang, Y., Long, Y., Li, S. and Liu, X. (2023). Straw return decomposition characteristics and effects on soil nutrients and maize yield. Agriculture 13: doi:10.3390/agriculture13081570.
Zhang, N., Bai, L., Wei, X., Li, T., Tang, Y., Zeng, X., Lei, Z., Wen, J. and Su, S. (2025). Promoted decomposition in straw return to double-cropped rice fields controls soil acidity, increases soil fertility and improves rice yield. Chem. Eng. J. 509: doi:10.1016/j.cej.2025.161309.










