Alexandratos, N. and Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision.
Ali, N. and Anjum, M. M. (2017). Effect of different nitrogen rates on growth, yield and quality of maize. Middle East J. Agric. Res. 6: 107-12.
Amanullah, M. Mohamed, T. Ananthi, K. S. Subramanian, and P. Muthukrishnan. (2011). Influence of mycorrhiza, nitrogen, and phosphorus on growth, yield, and economics of hybrid maize. Madras Agric. J. 98: 62-66.
Ameen, A., Tang, C., Han, L. and Xie, G. H. (2018). Short-term response of switchgrass to nitrogen, phosphorus, and potassium on semiarid sandy wasteland managed for biofuel feedstock. BioEnerg. Res. 11: 228–38.
Bindraban, P. S., Dimkpa, C. O., Angle, S. and Rabbinge, R. (2018). Unlocking the multiple public good services from balanced fertilizers. Food Secur. 10: 273–85.
Duncan, E. G., O’Sullivan, C. A., Roper, M. M., Biggs, J. S., and Peoples, M. B. (2018). Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: review. Field Crops Res. 226: 56–65. doi:10.1016/j.fcr.2018.07.010.
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. and Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nat. Geosci. 1: 636–39.
Ghosh, A., Bhattacharyya, R., Meena, M. C., Dwivedi, B. S., Singh, G., Agnihotri, R. and Sharma, C. (2018). Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Till. Res. 177: 134–44.
Godebo, T., Laekemariam, F. and Loha, G. (2021). Nutrient uptake, use efficiency and productivity of bread wheat (Triticum aestivum L.) as affected by nitrogen and potassium fertilizer in Keddida Gamela Woreda, Southern Ethiopia. Environ. Syst. Res. 10: doi:10.1186/ s40068-020-00210-4.
Gomez, K. A. and Gomez, A. A. (1984). Statistical procedures for agricultural research, John Wiley and Sons.
Jan, B., Bhat, M. A., Bhat, T. A., Yaqoob, M., Nazir, A., Bhat, M. A., Mir, A. H., Wani, F. J., Singh, J. K. and Kumar, R. (2022). Evaluation of seedling age and nutrient sources on phenology, yield and agrometeorological indices for sweet corn (Zea mays saccharata L.). Saudi J. Biol. Sci. 29: 735–42.
Jena, N., Vani, K. P., Rao, V. P. and Sankar, A. S. (2015). Effect of nitrogen and phosphorus fertilizers on growth and yield of quality protein maize (QPM). Int. J. Sci. Res. 4:197-99.
K¨orschens, M., Albert, E., Armbruster, M., Barkusky, D., Baumecker, M., Behle-Schalk, L., Bischoff, R., Cergan, Z., Ellmer, F. and Herbst, F. (2013). Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 59: 1017–40.
Kaleri, A. A., Lund, M. M., Manzoor, D., Sadiq, M., Adil, S., Naz, A., Hussain, A., Bilal, M., Pirzada, Z. A., Ali, M. and Rehman, M. U. (2025). Impact of different nitrogen levels on maize (Zea mays L.) growth and yield. Pure Appl. Biol. 14: 272-82.
Karki, M., Panth, B. P., Subedi, P., Aarty G. C and Regmi, R. (2020). Effect of different doses of nitrogen on production of spring maize (Zea Mays L.) In Gulmi, Nepal. Sustain. Food Agric. 1: 1-5
Khaleeq, K., Nazir, R., Hemmat, N., Sirat, W. A. and Samim, M. (2023). Response of maize (Zea mays L.) to the soil application of phosphorus fertilizer. J. Agric. Ecol. 17: 90-93.
Ma, L., Zhao, B., Guo, Z., Wang, D., Li, D., Xu, J., Li, Z. and Zhang, J. (2019). Divergent responses of bacterial activity, structure, and co-occurrence patterns to long-term unbalanced fertilization without nitrogen, phosphorus, or potassium in a cultivated vertisol. Environ. Sci. Pollut. Res. 26: 12741–54.
Maheswari, N., Maitra, S., Sairam, M., Ray, S., Sagar, L., Santosh D. T. and Gaikwad, D. J. (2025). Impact of real-time nitrogen management on the performance of maize–cowpea intercropping system. Crop Res. 60: 139-46.
Majumder, S., Shankar, T., Maitra, S., Adhikary, R., & and Sairam, M. (2023). Effect of nutrient omission on growth and productivity of rabi rice. Crop Res. 58: 3-4. doi:10.31830/2454-1761.2023.cr-11166.
Noor, H., Ding, P. C., Ren, A. X., Sun, M. and Gao, Z. Q. (2023). Effects of nitrogen fertilizer on photosynthetic characteristics and yield. Agronomy 13(6): doi:10.3390/agronomy13061550.
Ocwa, A., Harsanyi, E., Sz´eles, A., Holb, I. J., Szab´o, S., R´atonyi, T. and Mohammed, S. (2023). A bibliographic review of climate change and fertilization as the main drivers of maize yield: implications for food security. Agric. Food Secur. 12: doi:10.1186/s40066-023-00419-3.
Pasley, H. R., Camberato, J. J., Cairns, J. E., Zaman-Allah, M., Das, B. and Vyn, T. J. (2020). Nitrogen rate impacts on tropical maize nitrogen use efficiency and soil nitrogen depletion in eastern and southern Africa. Nutr. Cycl. Agroecosys. 116: 397–408.
Paul, S. K., Malik, G. C., Banerjee, M. and Majumder, S. (2024a). Effect of different levels of nitrogen and silicon in rice under red and laterite soil. Int. J. Exp. Res. Rev. 46: 305–12. doi:10. 52756/ijerr.2024.v46.024.
Paul, S. K., Malik, G. C., Banerjee, M., Ray, S., Majumder, S., Sivani, S. S., Shankar, T. and Kumar, D. S. (2024b). Effect of nitrogen management and silicon fertilization on crops. Environ. Ecol. 42: 1912–25. doi:10.60151/envec/uanw2908.
Ramu, Y. R. and Reddy, D. S. (2007). Yield, nutrient uptake and economics of hybrid maize as influenced by plant stand, levels and time of nitrogen application. Crop Res. 33: 41-45.
Rasmita, K. C., Bhatta, D., Lamsal, A. and Koirala, S. (2021). Effect of different doses of nitrogen on growth, yield and yield attributes of spring maize in Madichaur, Rolpa, Nepal. Int. J. Appl. Agric. Sci. 2: 120-25
Revathi, K., Rekha, M. S., Lakshmi, N. V. and Rani, P. P. (2019). Effect of planting densities and Nitrogen levels on nutrient uptake of rabi maize (Zea mays L.). Green Farming 10: 1-6.
Rietra, R. P., Heinen, M., Dimkpa, C. O. and Bindraban, P. S. (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant 48: 1895–920.
Sairam, M., Maitra, S., Ray, S., Maity, B. and Pradhan, P. (2025). Influence of need-based nutrient management on yield and nutrient use efficiency of Rabi maize (Zea mays L.) under sandy loam soils of Odisha, India. Farm. Manage. 10: 11-19.
Sharar, M. S., Ayub, M., Nadeem, M. A. and Ahmad, N. (2003). Effect of different rates of nitrogen and phosphorus on growth and grain yield of maize (Zea mays L.). Asian J. Plant Sci. 2: 347-49.
Sharma, S., Subedi, A. P., Budhathoki, B., Neupane, S. and Ghimire, P. (2023). Accessing the efficacy of different doses of phosphorous on growth and yield of spring maize (Zea mays L.) at Gulmi, Nepal. Int. J. Agric. Appl. Sci. 4: 12-16.
Shukla, G. C. (1972). Effect of different levels of nitrogen and phosphorus on yield, soil properties, and nutrients of corn. Agron. J. 64: 136-39.
Singh, S., Saini, S. K. and Singh, V. (2025). Effect of integrated nutrient management (INM) on growth, yield and nutrient uptake of maize (Zea mays L.). Crop Res. 60: 1-6.
Spohn, M., P¨otsch, E. M., Eichorst, S. A., Woebken, D., Wanek, W. and Richter, A. (2016). Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 97: 168–75.
Tariq Mahmood and Muhammed Saeed (1998). Nitrogen levels and planting density effects on different agro physiological traits of maize. Pak. J. Biol. Sci. 1: 259-63. doi:10.3923/ pjbs.1998.259.263.
Tian, L. Y., Guo, Q. J., Yu, G. R., Zhu, Y. G., Lang, Y. C., Wei, R. F., Hu, J., Yang, X. R. and Ge, T. D. (2020). Phosphorus fractions and oxygen isotope composition of inorganic phosphate in typical agricultural soils. Chemosphere 239: doi:10.1016/j.chemosphere.2019.124622.
Van Wesenbeeck, C. F. A., Keyzer, M. A., van Veen, W. C. M. and Qiu, H., (2021). Can China’s overuse of fertilizer be reduced without threatening food security and farm incomes? Agric. Syst. 190: doi:10.1016/j.agsy.2021.103093.
Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., Johnes, P. J., Katzenberger, J., Martinelli, L. A. and Matson, P. A. (2009). Agriculture: Nutrient imbalances in agricultural development. Science 324: 1519–20.
Wang, H. L., Zhang, X. C., Zhang, G. P., Fang, Y. J., Hou, H. Z., Lei, K. N. and Ma, Y. F. (2023). Regulation of density and fertilization on crude protein synthesis in forage maize in a semiarid rain-fed area. Agriculture 13: doi:10.3390/agriculture13030715.
Xin, X., Zhang, J., Zhu, A. and Zhang, C. (2016). Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Till. Res. 156: 166–72.
Yahaya, S. M., Mahmud, A. A., Abdullahi, M. and Haruna, A. (2023). Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: a review. Pedosphere 33: 385–406.
Yasasri, L, Majumder, S., Shankar, T., Paul, S.K. and Ray, S. (2024). Optimization of nitrogen split application in sweet corn (Zea mays L. saccharata). Plant Sci. Today 11: 1649-53. doi:10. 14719/pst.3695.
Yousaf, M., Li, J., Lu, J., Ren, T., Cong, R., Fahad, S. and Li, X., (2017). Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 7: doi:10.1038/s41598-017-01412-0.
Zhang, J. J., Li, H., Gao, H. J., Zhu, P., Gao, Q. and Wang, L. C. (2014). Effects of long-term fertilization and cropping regimes on total nitrogen and organic nitrogen forms in a Mollisol of Northeast China. Plant Soil Environ. 60: 544–49.
Zhang, M., Sun, D., Niu, Z., Yan, J., Zhou, X. and Kang, X. (2020). Effects of combined organic/inorganic fertilizer application on growth, photosynthetic characteristics, yield and fruit quality of Actinidia Chinesis cv ‘Hongyang. Glob. Ecol. Conserv. 22: doi:10.1016 /j.gecco.2020.e00997.
Zheng, M. M., Wang, C., Li, W. X., Guo, L., Cai, Z. J., Wang, B. R., Chen, J. and Shen, R. F. (2021). Changes of acid and alkaline phosphatase activities in long-term chemical fertilization are driven by similar soil properties and associated microbial community composition in acidic soil. Eur. J. Soil Biol. 104: doi:10.1016/j.ejsobi.2021.103312.
Ali, N. and Anjum, M. M. (2017). Effect of different nitrogen rates on growth, yield and quality of maize. Middle East J. Agric. Res. 6: 107-12.
Amanullah, M. Mohamed, T. Ananthi, K. S. Subramanian, and P. Muthukrishnan. (2011). Influence of mycorrhiza, nitrogen, and phosphorus on growth, yield, and economics of hybrid maize. Madras Agric. J. 98: 62-66.
Ameen, A., Tang, C., Han, L. and Xie, G. H. (2018). Short-term response of switchgrass to nitrogen, phosphorus, and potassium on semiarid sandy wasteland managed for biofuel feedstock. BioEnerg. Res. 11: 228–38.
Bindraban, P. S., Dimkpa, C. O., Angle, S. and Rabbinge, R. (2018). Unlocking the multiple public good services from balanced fertilizers. Food Secur. 10: 273–85.
Duncan, E. G., O’Sullivan, C. A., Roper, M. M., Biggs, J. S., and Peoples, M. B. (2018). Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: review. Field Crops Res. 226: 56–65. doi:10.1016/j.fcr.2018.07.010.
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. and Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nat. Geosci. 1: 636–39.
Ghosh, A., Bhattacharyya, R., Meena, M. C., Dwivedi, B. S., Singh, G., Agnihotri, R. and Sharma, C. (2018). Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Till. Res. 177: 134–44.
Godebo, T., Laekemariam, F. and Loha, G. (2021). Nutrient uptake, use efficiency and productivity of bread wheat (Triticum aestivum L.) as affected by nitrogen and potassium fertilizer in Keddida Gamela Woreda, Southern Ethiopia. Environ. Syst. Res. 10: doi:10.1186/ s40068-020-00210-4.
Gomez, K. A. and Gomez, A. A. (1984). Statistical procedures for agricultural research, John Wiley and Sons.
Jan, B., Bhat, M. A., Bhat, T. A., Yaqoob, M., Nazir, A., Bhat, M. A., Mir, A. H., Wani, F. J., Singh, J. K. and Kumar, R. (2022). Evaluation of seedling age and nutrient sources on phenology, yield and agrometeorological indices for sweet corn (Zea mays saccharata L.). Saudi J. Biol. Sci. 29: 735–42.
Jena, N., Vani, K. P., Rao, V. P. and Sankar, A. S. (2015). Effect of nitrogen and phosphorus fertilizers on growth and yield of quality protein maize (QPM). Int. J. Sci. Res. 4:197-99.
K¨orschens, M., Albert, E., Armbruster, M., Barkusky, D., Baumecker, M., Behle-Schalk, L., Bischoff, R., Cergan, Z., Ellmer, F. and Herbst, F. (2013). Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 59: 1017–40.
Kaleri, A. A., Lund, M. M., Manzoor, D., Sadiq, M., Adil, S., Naz, A., Hussain, A., Bilal, M., Pirzada, Z. A., Ali, M. and Rehman, M. U. (2025). Impact of different nitrogen levels on maize (Zea mays L.) growth and yield. Pure Appl. Biol. 14: 272-82.
Karki, M., Panth, B. P., Subedi, P., Aarty G. C and Regmi, R. (2020). Effect of different doses of nitrogen on production of spring maize (Zea Mays L.) In Gulmi, Nepal. Sustain. Food Agric. 1: 1-5
Khaleeq, K., Nazir, R., Hemmat, N., Sirat, W. A. and Samim, M. (2023). Response of maize (Zea mays L.) to the soil application of phosphorus fertilizer. J. Agric. Ecol. 17: 90-93.
Ma, L., Zhao, B., Guo, Z., Wang, D., Li, D., Xu, J., Li, Z. and Zhang, J. (2019). Divergent responses of bacterial activity, structure, and co-occurrence patterns to long-term unbalanced fertilization without nitrogen, phosphorus, or potassium in a cultivated vertisol. Environ. Sci. Pollut. Res. 26: 12741–54.
Maheswari, N., Maitra, S., Sairam, M., Ray, S., Sagar, L., Santosh D. T. and Gaikwad, D. J. (2025). Impact of real-time nitrogen management on the performance of maize–cowpea intercropping system. Crop Res. 60: 139-46.
Majumder, S., Shankar, T., Maitra, S., Adhikary, R., & and Sairam, M. (2023). Effect of nutrient omission on growth and productivity of rabi rice. Crop Res. 58: 3-4. doi:10.31830/2454-1761.2023.cr-11166.
Noor, H., Ding, P. C., Ren, A. X., Sun, M. and Gao, Z. Q. (2023). Effects of nitrogen fertilizer on photosynthetic characteristics and yield. Agronomy 13(6): doi:10.3390/agronomy13061550.
Ocwa, A., Harsanyi, E., Sz´eles, A., Holb, I. J., Szab´o, S., R´atonyi, T. and Mohammed, S. (2023). A bibliographic review of climate change and fertilization as the main drivers of maize yield: implications for food security. Agric. Food Secur. 12: doi:10.1186/s40066-023-00419-3.
Pasley, H. R., Camberato, J. J., Cairns, J. E., Zaman-Allah, M., Das, B. and Vyn, T. J. (2020). Nitrogen rate impacts on tropical maize nitrogen use efficiency and soil nitrogen depletion in eastern and southern Africa. Nutr. Cycl. Agroecosys. 116: 397–408.
Paul, S. K., Malik, G. C., Banerjee, M. and Majumder, S. (2024a). Effect of different levels of nitrogen and silicon in rice under red and laterite soil. Int. J. Exp. Res. Rev. 46: 305–12. doi:10. 52756/ijerr.2024.v46.024.
Paul, S. K., Malik, G. C., Banerjee, M., Ray, S., Majumder, S., Sivani, S. S., Shankar, T. and Kumar, D. S. (2024b). Effect of nitrogen management and silicon fertilization on crops. Environ. Ecol. 42: 1912–25. doi:10.60151/envec/uanw2908.
Ramu, Y. R. and Reddy, D. S. (2007). Yield, nutrient uptake and economics of hybrid maize as influenced by plant stand, levels and time of nitrogen application. Crop Res. 33: 41-45.
Rasmita, K. C., Bhatta, D., Lamsal, A. and Koirala, S. (2021). Effect of different doses of nitrogen on growth, yield and yield attributes of spring maize in Madichaur, Rolpa, Nepal. Int. J. Appl. Agric. Sci. 2: 120-25
Revathi, K., Rekha, M. S., Lakshmi, N. V. and Rani, P. P. (2019). Effect of planting densities and Nitrogen levels on nutrient uptake of rabi maize (Zea mays L.). Green Farming 10: 1-6.
Rietra, R. P., Heinen, M., Dimkpa, C. O. and Bindraban, P. S. (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant 48: 1895–920.
Sairam, M., Maitra, S., Ray, S., Maity, B. and Pradhan, P. (2025). Influence of need-based nutrient management on yield and nutrient use efficiency of Rabi maize (Zea mays L.) under sandy loam soils of Odisha, India. Farm. Manage. 10: 11-19.
Sharar, M. S., Ayub, M., Nadeem, M. A. and Ahmad, N. (2003). Effect of different rates of nitrogen and phosphorus on growth and grain yield of maize (Zea mays L.). Asian J. Plant Sci. 2: 347-49.
Sharma, S., Subedi, A. P., Budhathoki, B., Neupane, S. and Ghimire, P. (2023). Accessing the efficacy of different doses of phosphorous on growth and yield of spring maize (Zea mays L.) at Gulmi, Nepal. Int. J. Agric. Appl. Sci. 4: 12-16.
Shukla, G. C. (1972). Effect of different levels of nitrogen and phosphorus on yield, soil properties, and nutrients of corn. Agron. J. 64: 136-39.
Singh, S., Saini, S. K. and Singh, V. (2025). Effect of integrated nutrient management (INM) on growth, yield and nutrient uptake of maize (Zea mays L.). Crop Res. 60: 1-6.
Spohn, M., P¨otsch, E. M., Eichorst, S. A., Woebken, D., Wanek, W. and Richter, A. (2016). Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biol. Biochem. 97: 168–75.
Tariq Mahmood and Muhammed Saeed (1998). Nitrogen levels and planting density effects on different agro physiological traits of maize. Pak. J. Biol. Sci. 1: 259-63. doi:10.3923/ pjbs.1998.259.263.
Tian, L. Y., Guo, Q. J., Yu, G. R., Zhu, Y. G., Lang, Y. C., Wei, R. F., Hu, J., Yang, X. R. and Ge, T. D. (2020). Phosphorus fractions and oxygen isotope composition of inorganic phosphate in typical agricultural soils. Chemosphere 239: doi:10.1016/j.chemosphere.2019.124622.
Van Wesenbeeck, C. F. A., Keyzer, M. A., van Veen, W. C. M. and Qiu, H., (2021). Can China’s overuse of fertilizer be reduced without threatening food security and farm incomes? Agric. Syst. 190: doi:10.1016/j.agsy.2021.103093.
Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., Johnes, P. J., Katzenberger, J., Martinelli, L. A. and Matson, P. A. (2009). Agriculture: Nutrient imbalances in agricultural development. Science 324: 1519–20.
Wang, H. L., Zhang, X. C., Zhang, G. P., Fang, Y. J., Hou, H. Z., Lei, K. N. and Ma, Y. F. (2023). Regulation of density and fertilization on crude protein synthesis in forage maize in a semiarid rain-fed area. Agriculture 13: doi:10.3390/agriculture13030715.
Xin, X., Zhang, J., Zhu, A. and Zhang, C. (2016). Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Till. Res. 156: 166–72.
Yahaya, S. M., Mahmud, A. A., Abdullahi, M. and Haruna, A. (2023). Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: a review. Pedosphere 33: 385–406.
Yasasri, L, Majumder, S., Shankar, T., Paul, S.K. and Ray, S. (2024). Optimization of nitrogen split application in sweet corn (Zea mays L. saccharata). Plant Sci. Today 11: 1649-53. doi:10. 14719/pst.3695.
Yousaf, M., Li, J., Lu, J., Ren, T., Cong, R., Fahad, S. and Li, X., (2017). Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 7: doi:10.1038/s41598-017-01412-0.
Zhang, J. J., Li, H., Gao, H. J., Zhu, P., Gao, Q. and Wang, L. C. (2014). Effects of long-term fertilization and cropping regimes on total nitrogen and organic nitrogen forms in a Mollisol of Northeast China. Plant Soil Environ. 60: 544–49.
Zhang, M., Sun, D., Niu, Z., Yan, J., Zhou, X. and Kang, X. (2020). Effects of combined organic/inorganic fertilizer application on growth, photosynthetic characteristics, yield and fruit quality of Actinidia Chinesis cv ‘Hongyang. Glob. Ecol. Conserv. 22: doi:10.1016 /j.gecco.2020.e00997.
Zheng, M. M., Wang, C., Li, W. X., Guo, L., Cai, Z. J., Wang, B. R., Chen, J. and Shen, R. F. (2021). Changes of acid and alkaline phosphatase activities in long-term chemical fertilization are driven by similar soil properties and associated microbial community composition in acidic soil. Eur. J. Soil Biol. 104: doi:10.1016/j.ejsobi.2021.103312.










