Loading...

Molecular identification and characterization of butachlor-degrading bacteria isolated from the agricultural soil in Bargarh, Odisha  


Citation :- Molecular identification and characterization of butachlor-degrading bacteria isolated from the agricultural soil in Bargarh, Odisha. Crop Res. 60: 441-451
SHIVANGI SHUKLA, RAGHUNATH SATPATHY AND AMIYA KUMAR PATEL rsatpathy@gmuniversity.ac.in
Address : Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar-768019, Burla, Odisha, India
Submitted Date : 17-07-2025
Accepted Date : 7-08-2025

Abstract

Butachlor is a chlorinated, persistent and toxic herbicide widely used in agriculture, posing serious threats to soil, water, and non-target organisms. Its accumulation disrupts microbial balance and suppresses beneficial species like cyanobacteria, impairing ecosystem functions. Current knowledge of its degradation mechanisms is limited, especially under varying soil and climatic conditions. Therefore, this study was conducted in Godabhaga in Bargarh district, Odisha during rainy season in 2024. The objective of the study was to isolate butachlor degrading bacteria followed by their biochemical characterization and identification through 16S rRNA ribotyping. Three bacterial strains, AFSB1, AFSB2, and AFSB3, were isolated from butachlor-treated agricultural soil in Attabira, Bargarh district, Odisha. Composite soil samples were enriched and cultured to isolate potential butachlor-degrading bacteria, followed by biochemical and antibiotic sensitivity profiling. Molecular identification was performed using 16S rRNA sequencing, and degradation efficiency was analysed using spectrophotometry and HPLC. Morphological and biochemical analyses identified the strains AFSB1 and AFSB2 as Gram-negative and AFSB3 as Gram-positive. Based on 16S rRNA gene sequencing, the isolates were identified as Acinetobacter baumannii, Enterobacter cloacae and Rhodococcus sp. Molecular and phylogenetic analysis also verified close genetic relationships of these strains with known herbicide degraders. Further, the antibiotic susceptibility testing showed the patterns of multidrug resistance. According to these results, the strains that have been identified significant potential for application in bioremediation techniques aimed at lowering herbicide toxicity in agricultural lands.

Keywords

16S rRNA gene sequencing agricultural soil butachlor degradation microbial community molecular identification 


References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403–10.
American Soc. for Microbiology. (2016). Colony morphology protocol. In: Methods for General and Molecular Bacteriology. ASM Press. Available at https://asm.org/asm/media/protocol-images/colony-morphology-protocol.pdf.
Balaji, E., Raman, R., Krishnamoorthy, R. and Dhanasekaran, K. (2024). Evaluation of different weed management practices on growth and yield of transplanted rice (Oryza sativa L.) in Northeastern Zone of Tamil Nadu. Crop Res. 59: 8-13.
Bhoi, R., Mahananda, M. R. and Pradhan, A. (2023). High consumption of pesticides in agricultural fields leads to prevalence of cancer cases in rural pockets of eastern India: A case study. Environ. Qual. Manage. 33: 359–76.
Bokade, P., Gaur, V. K., Tripathi, V., Bobate, S., Manickam, N. and Bajaj, A. (2023). Bacterial remediation of pesticide polluted soils: Exploring the feasibility of site restoration. J. Hazard. Mater. 441: doi:10.1016/j.jhazmat.2022.129906.
Cappuccino, J. G. and Sherma, N. (2007). Microbiology: A Laboratory Manual. 7th ed., Pearson Education. pp: 143-93.
De Bruijn, F. J. (1992). Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180–87.
Duc, H. D., Thuy, N. T. D., Truc, H. T. T., Nhu, N. T. H. and Oanh, N. T. (2020). Degradation of butachlor and propanil by Pseudomonas sp. strain But2 and Acinetobacter baumannii strain DT. FEMS Microbiol. Lett. 367: doi:10.1093/femsle/fnaa151.
Dwivedi, S., Singh, B. R., Al-Khedhairy, A. A., Alarifi, S. and Musarrat, J. (2010). Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS‐1 from soil and assessment of its biodegradation potential. Lett. Appl. Microbiol. 51: 54-60.
Forbes, B. A., Sahm, D. F. and Weissfeld, A. S. (2007). Diagnostic Microbiology. Mosby, pp: 288-302.
Griffiths, J., Armstrong, H., Innes, R. and Terry, J. (2018). Can aerial herbicide application control Grey Willow (Salix cinerea L.) and stimulate native plant recovery in New Zealand wetlands? Ecol. Manage. Restor. 19: 49-57.
Hossain, M. F., Akter, M. A., Sohan, M. S. R., Sultana, D. N., Reza, M. A. and Hoque, K. M. F. (2022). Bioremediation potential of hydrocarbon degrading bacteria: Isolation, characterization and assessment. Saudi J. Biol. Sci. 29: 211–16.
Huang, J., Ai, G., Liu, N. and Huang, Y. (2022). Environmental adaptability and organic pollutant degradation capacity of a novel Rhodococcus species derived from soil in the uninhabited area of the Qinghai-Tibet plateau. Microorganisms 10: doi:10.3390/microorganisms1010 1935.
Jolodar, N. R., Karimi, S., Bouteh, E., Balist, J. and Prosser, R. (2021). Human health and ecological risk assessment of pesticides from rice production in the Babol Roud River in Northern Iran. Sci. Total Environ. 772: doi:10.1016/j.scitotenv.2020.144729.
Kaur, R. and Goyal, D. (2020). Biodegradation of butachlor by Bacillus altitudinis and identification of metabolites. Curr. Microbiol. 77: 2602-12.
Kaur, R., Singh, D., Kumari, A., Sharma, G., Rajput, S., Arora, S. and Kaur, R. (2021). Pesticide residues degradation strategies in soil and water: a review. Int. J. Environ. Sci. Technol. 20: 3537–60.
Kim, M. and Chun, J. (2005). Bacterial community structure in kimchi, a Korean fermented vegetable food as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91–96.
Kumari, N., Narayan, O. P. and Rai, L. C. (2012). Cyanobacterial diversity shifts induced by butachlor in selected Indian rice fields in eastern Uttar Pradesh and western Bihar analyzed with PCR and DGGE. J. Microbiol. Biotechnol. 22: 1–12.
Lagat, S. C., Lalah, J. O., Kowenje, C. O. and Getenga, Z. M. (2011). Metribuzin mobility in soil column as affected by environmental and physico-chemical parameters in Mumias sugarcane zone, Kenya. APN J. Agric. Biol. Sci. 6: 27-33.
Lee, H., Kim, N. H. and Kim, D. U. (2023). Isolation and characterization of novel butachlor-degrading bacteria from rice paddy soils. Processes 11: doi:10.3390/pr11041222.
Li, W., Wang, K., Wang, P., Yang, P., Xu, S., Tong, J., Zhang, Y., Yang, Y., Han, L., Ye, M., Shen, S., Lei, B. and Liu, B. (2025). Impact of glyphosate on soil bacterial communities and degradation mechanisms in large-leaf tea plantations. J. Hazard. Mater. 483doi:10.1016/j. jhazmat.2024.136626.
Lin, Z., Pang, S., Zhou, Z., Wu, X., Bhatt, P. and Chen, S. (2021). Current insights into the microbial degradation for butachlor: strains, metabolic pathways, and molecular mechanisms. Appl. Microbiol. Biotechnol. 105: 4369-81.
Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J. and Woese, C. R. (1997). The RDP (ribosomal database project). Nucleic Acids Res. 25: 109–11.
Mohanty, A. K., Sundaray, J. K., Das, I. I., Nayak, S., Sahoo, L. and Kumar, R. (2023). Agrochemical uses and patterns in the western central Tableland: A case study. Int. J. Econ. Plants 10: 183–91.
Mohanty, S. S. and Jena, H. M. (2018). Process optimization of butachlor bioremediation by Enterobacter cloacae using Plackett-Burman design and response surface methodology. Process Saf. Environ. Prot. 119: 198–206.
Mutua, G. K., Ngigi, A. N. and Getenga, Z. M. (2016). Degradation characteristics of metribuzin in soils within the Nzoia River Drainage Basin, Kenya. Toxicol. Environ. Chem. 98: 800–13.
Pandey, B., Pandey, A. K. and Dubey, S. K. (2025). Integrated omics analyses elucidate acetaminophen biodegradation by Enterobacter sp. APAP_BS8. J. Environ. Manag. 375: doi:10.1016/j.jenvman.2025.124215.
Parkinson, D., Gray, T. R. and Williams, S. T. (1971). Methods for Studying the Ecology of Soil Micro-organisms. Book Published by Blackwell Scientific Publications. pp. 116.
Parven, A., Meftaul, I. M., Venkateswarlu, K. and Megharaj, M. (2025). Herbicides in modern sustainable agriculture: environmental fate, ecological implications, and human health concerns. Int. J. Environ. Sci. Technol. 22: 1181–202.
Rashid, B., Husnain, T. and Riazuddin, S. (2010). Herbicides and pesticides as potential pollutants: a global problem. In: Plant Adaptation and Phytoremediation. Dordrecht: Springer Netherlands. pp: 427–47.
Satpathy, R., Konkimalla, V. B. and Ratha, J. (2017). Microbial dehalogenation: 3-chloropropanoic acid (3-CPA) degradation as a case study. Microbiology 86: 32–41.
Singh, J. and Nandabalan, Y. K. (2018). Prospecting Ammoniphilus sp. J F isolated from agricultural fields for butachlor degradation. 3 Biotech 8: doi:10.1007/s13205-018-1165-7.
Singh, T., Satapathy, B. S., Gautam, P., Lal, B., Kumar, U., Saikia, K. and Pun, K. B. (2018). Comparative efficacy of herbicides in weed control and enhancement of productivity and profitability of rice. Exp. Agric. 54: 363–81.
Subishan, M., Vishnudevi, S., Sundari, A. and Baradhan, G. (2025). Impact of herbicides on transplanted rice (Oryza sativa L.) under an integrated rice–fish–poultry farming system. Res. Crop. 26: 415-20.
Tamura, K., Stecher, G. and Kumar, S. (2021). MEGA 11: Molecular evolutionary genetics analysis. Mol. Biol. Evol. 38: 3022-27.
Tarfeen, N., Nisa, K. U., Hamid, B., Bashir, Z., Yatoo, A. M., Dar, M. A., Mohiddin, F. A., Amin, Z., Ahmad, R. A. and Sayyed, R. Z. (2022). Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: A review. Processes 10: doi:10.3390/pr10071358.
Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
World Health Organization (2020). Report of the 12th FAO/WHO Joint Meeting on Pesticide Management: 19–22 November 2019, Geneva, Switzerland. World Health Organization.
Xiang, Q., Xu, B., Ding, Y., Liu, X., Zhou, Y. and Ahmad, F. (2018). Oxidative stress response induced by butachlor in zebrafish Embryo/Larvae: The protective effect of vitamin C. Bull. Environ. Contam. Toxicol. 100: 208-15.
Xu, L., Zhao, Y., Li, Y. and Sun, J. Q. (2024). Genomic and transcriptomic analyses provide new insights into the allelochemical degradation preference of a novel Acinetobacter strain. Environ. Res. 246: doi:10.1016/j.envres.2024.118145.
Zhang, C., Hao, Q., Zhang, Z., Zhang, X., Pan, H., Zhang, J., Zhang, H. and Sun, F. (2019). Whole genome sequencing and analysis of chlorimuron-ethyl degrading bacteria Klebsiella pneumoniae 2N3. Int. J. Mol. Sci. 20: doi:10.3390/ijms20123053.
Zhang, J., Zheng, J. W., Liang, B., Wang, C. H., Cai, S., Ni, Y. Y., He, J. and Li, S. P. (2011). Biodegradation of chloroacetamide herbicides by Paracoccus sp. FLY-8 in vitro. J. Agric. Food Chem. 59: 4614–21.
 
 
 

Global Footprints