Loading...

Amelioration effect of exogenously applied organic acids on morphology and physiology of Pisum sativum plants under salt stress


Citation :- Amelioration effect of exogenously applied organic acids on morphology and physiology of Pisum sativum plants under salt stress. Crop Res. 60: 408-414
JATIN KUMAR AND MEGHA CHOUDHARY jatin.kumar@mail.jaypeeu.ac.in
Address : Department of Life Sciences, Jaypee University, Anoopshahr, Bulandshahr-203390, Uttar Pradesh, India
Submitted Date : 15-07-2025
Accepted Date : 2-08-2025

Abstract

Salt stress is a significant abiotic stress that affects agriculture worldwide. Pea (Pisum sativum L.) belongs to Leguminosae family, which is an important vegetable crop which is majorly cultivated for its edible seeds. However, pea is salt sensitive crop, and its yield is severely impacted under high salty soils, globally. The application of organic acids to salt affected crop plants can be effective in mitigating salt stress. In the present study, amelioration effect of five different organic acids, namely, gallic acid, ascorbic acid, oxalic acid, glycine (amino acid), and ethylene diamine tetra acetic acid (EDTA) on morphology and physiology of pea seedlings under salt stress were studied. It was observed that high salt stress concentrations (NaCl: 3000 mg/kg) severely affected the morphology and physiology of pea plants. High salt concentration resulted in decrease in shoot length (44%), leaf area (32%), branches number (18%), shoot weight (58%), leaf relative water content (22%), chlorophyll a (29%), chlorophyll b (53%), and carotenoids (26%) as compared to control pea plants. All the organic acids improved the morphology and physiology of pea seedlings under high salinity and among all organic acids tested, gallic acid proved to be the best in mitigating salt stress. Treatment of pea seedlings with gallic acid resulted in increase in shoot length, leaf number, and shoot weight by 8%, 30%, and 9% in comparison to control seedlings under high salinity. The present study revealed that exogenous application of organic acids can be used in making an effective salt amelioration strategy in pea plants. 

Keywords

Amelioration antioxidants gallic acid Pisum sativum salt stress

References

Abdelaal, K., Alsubeie, M. S., Hafez, Y., Emeran, A., Moghanm, F., Okasha, S., Omara, R., Basahi, M. A., Darwish, D. B. E., Ibrahim, M. F., El-Yazied, A. A., Rashwan, E. A., Elkelish, A., Mady, M. A. and Ibraheem, F.  (2022). Physiological and biochemical changes in vegetable and field crops under drought, salinity and weeds stresses: control strategies and management. Agriculture 12: doi:10.3390/agriculture12122084.
Ahmad, I., Zhu, G., Zhou, G., Younas, M. U., Suliman, M. S. E., Liu, J., Zhu, Y. M. and Salih, E. G. I. (2023). Integrated approaches for increasing plant yield under salt stress. Front. Plant Sci. 14: doi:10.3389/fpls.2023.1215343.
Ali, S., Abbas, Z., Seleiman, M. F., Rizwan, M., Yavas, I., Alhammad, B. A., Shami, A., Hasanuzzaman, M. and Kalderis, D. (2020). Glycine betaine accumulation, significance and interests for heavy metal tolerance in plants. Plants 9: doi:10.3390/plants9070896.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: doi:10.1104/pp.24.1.1.
Ashraf, M., Athar, H. R., Harris, P. J. C. and Kwon, T. R. (2008). Some prospective strategies for improving crop salt tolerance. Adv. Agron. 97: 45-110.
Babaei, M., Shabani, L. and Hashemi-Shahraki, S. (2022). Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L. Bot. Stud. 63: doi:10.1186/s40529-022-00352-x.
Balasubramaniam, T., Shen, G., Esmaeili, N. and Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants 12: doi:10.3390/plants12122253.
Bhattarai, K. and Bhattarai, B. (2024). Mechanism of DNA methylation and its role in biotic and abiotic stress response in plants: A review. Farm. Manage. 6: 39-46.
Bouazzi, A., Bouallegue, A., Kharrat, M., Abbes, Z. and Horchani, F. (2024). Seed priming with gallic acid and hydrogen peroxide as a smart approach to mitigate salt stress in faba bean (Vicia faba L.) at the germination stage. Russ. J. Plant Physiol. 71: doi:10.1134/S1021443724605354.
Dong, X., Ma, X., Zhao, Z. and Ma, M. (2024). Exogenous betaine enhances salt tolerance of Glycyrrhiza uralensis through multiple pathways. BMC Plant Biol. 24: doi:10.1186/s12870-024-04851-w.
Ehtaiwwesh, A. F. and Emsahel, M. J. (2020). Impact of salinity stress on germination and growth of pea (Pisum sativum L.) plants. Al-Mukhtar J. Sci35: 146-59.
Firdoos, A., Guleria, P. and Kumar, V. (2025). Effect of sodium chloride mediated salt stress on seedling vigour and growth of okra (Abelmoschus esculentus L.) grown in hydroponics. Res. Crop. 26: 116-23.
Fu, M., Liu, L., Fu, B., Hou, M., Xiao, Y., Liu, Y., Sa, D. and Lu, Q. (2025). Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions. Front. Plant Sci.15: doi:10.1134/s1021443724605354.
Kanwal, R., Maqsood, M.F., Shahbaz, M., Naz, N., Zulfiqar, U., Ali, M.F., Jamil, M., Khalid, F., Ali, Q., Sabir, M. A., and Chaudhary, T., Ali, H. M. and  Alsakkaf, W. A. A. (2024). Exogenous ascorbic acid as a potent regulator of antioxidants, osmo-protectants, and lipid peroxidation in pea under salt stress. BMC Plant Biol. 24: doi:10.1186/s12870-024-04947-3.
Khan, M. A. H., Baset Mia, M. A., Quddus, M. A., Sarker, K. K., Rahman, M., Skalicky, M., Brestic, M., Gaber, A., Alsuhaibani, A. M. and Hossain, A. (2022). Salinity-induced physiological changes in pea (Pisum sativum L.): Germination rate, biomass accumulation, relative water content, seedling vigor and salt tolerance index. Plants 11: doi:10.3390/plants11243493.
Kiruthiga, N., Dhanapal, S., Devi, L. A., Arc, C. D. J. O., Begum, A. B. S. and Saravanan, K. (2025). Exogenous ascorbic acid priming for mitigation of salinity stress in soybean (Glycine max (L.) Merrill) cv. Indira Soy. Crop Res. 60: 18-27.
Li, Q., Jiang, N., Mei, X., Zu, Y., Li, Z., Qin, L. and Li, B. (2022). Effects of lime and oxalic acid on antioxidant enzymes and active components of Panax notoginseng under cadmium stress. Sci. Rep. 12: doi:10.1038/s41598-022-15280-w.
Lichtenthaler, H. K. and Wellburn, A. R. (1983). Determination of total carotenoids and chlorophyll a and b of leaf extract in different solvents. Biochem. Soc. Trans. 11: 591-92.
Menzi, P., Nkomo, M., Keyster, M. and Klein, A. (2018). Gallic acid regulates physiological and biochemical responses of soybean plants under salt stress. S. Afr. J. Bot. 115doi:10.1016/ j.sajb.2018.02.170.
Mousavi, A., Pourakbar, L. and Moghaddam, S. S. (2022). Effects of malic acid and EDTA on oxidative stress and antioxidant enzymes of okra (Abelmoschus esculentus L.) exposed to cadmium stress. Ecotoxicol. Environ. Saf. 248: doi:10.1016/j.ecoenv.2022.114320.
Pandit, K., Kaur, S., Kumar, M., Bhardwaj, R. and Kaur, S. (2024). Salinity stress: Impact on plant growth. In: Environmental Challenges in Attaining Food Security (Eds. Sharma, A., Kumar, M. and Sharma, P).  9: 145-60.
Popova, A. V., Borisova, P. and Vasilev, D. (2023). Response of pea plants (Pisum sativum cv. Ran 1) to NaCl treatment in regard to membrane stability and photosynthetic activity. Plants 12:      doi:10.3390/plants12020324.
Rahman, A., Alam, M. U., Hossain, M. S., Mahmud, J. A., Nahar, K., Fujita, M. and Hasanuzzaman, M. (2022). Exogenous gallic acid confers salt tolerance in rice seedlings: Modulation of ion homeostasis, osmoregulation, antioxidant defense, and methylglyoxal detoxification systems. Agronomy 13: doi:10.3390/agronomy13010016.
Shahid, M. A., Pervez, M. A., Balal, R. M., Ayyub, C. M., Ghazanfar, U., Abbas, T., Rashid, A., Garcia-Sanchez, F., Mattson, N. S. and Akram, A. (2011). Effect of salt stress on growth, gas exchange attributes and chlorophyll contents of pea (Pisum sativum). Afr. J. Agric. Res. 6: 5808-16.
Shao, Q., Ren, L., Ramzan, M., Hussain, M. B., Datta, R., Almoallim, H. S., Ansari, M. J. and Ehsan, A. (2024). Combined effect of gallic acid and zinc ferrite nanoparticles on wheat growth and yield under salinity stress. Sci. Rep. 14: doi:10.1038/s41598-024-63175-9.
Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58: 339-66.
Xu, K., Sun, X., Sun, C., Wang, Y., Zhu, H., Xu, W. and Feng, D. (2025). Enhanced salt tolerance of pea (Pisum sativum L.) Seedlings illuminated by LED red light. Horticulturae 11: doi:10.3390/horticulturae11020150.
Zheng, Y., Li, Z., Tan, Z., Liu, Y., Zhang, X., Liu, J., Hu, J., Yang, Z. and Chen, Y. (2025). Iron (II)-EDTA alleviate salinity injury through regulating ion balance in halophyte Seashore paspalum. Grass Res. 5: doi:10.48130/grares-0024-0029.

Global Footprints