Loading...

Smart agriculture through AI and IoT integration: Automation of AI-controlled greenhouses and digital crop advisory systems


Citation :- Smart agriculture through AI and IoT integration: Automation of AI-controlled greenhouses and digital crop advisory systems. Crop Res. 60: 421-432
MADHUSUDAN NARAYAN, PARIMAL KUMAR, SUPRIYO BASAK AND RAJEEV KANTH msnarayan07@gmail.com
Address : Amity University Jharkhand, Naya Sarai, Ranchi -835303, Jharkhand, India
Submitted Date : 24-06-2025
Accepted Date : 8-10-2025

Abstract

This research hypothesizes that the integration of AI and IoT technologies including WSNs, GPS/GIS, deep learning, and machine vision within smart agriculture systems such as greenhouses and digital crop advisories can significantly improve input efficiency, reduce environmental footprints, and increase smallholder inclusivity. It further posits that enabling technologies like 5G/6G, edge computing, multispectral imaging, and blockchain-enabled recycling will enhance real-time decision-making, support autonomous operations in remote terrains, and mitigate lifecycle impacts of agricultural digitization. Collectively, these advancements are expected to contribute to Sustainable Development Goals (SDGs) 2 (Zero Hunger) and 13 (Climate Action). A systematic literature review (PRISMA protocol; conducted Jan- May 2025) analyzed 85 peer-reviewed studies (2020–2025) from Scopus, Web of Science, and IEEE Xplore, employing thematic assessment of technical efficacy, socio-economic adoption, environmental trade-offs, and policy frameworks. AI-controlled greenhouses achieved 40% water savings in arid regions via precision irrigation; digital advisories with VRT reduced orchard pesticide use by 55%; voice-based NLP alerts boosted smallholder engagement by 89%; solar-edge computing lowered emissions by 35%; and blockchain-driven recycling achieved 85% sensor reuse. Critical barriers included LiDAR signal limitations under dense canopies, interoperability gaps between legacy/modern systems, and high costs excluding 60% of smallholders.

Keywords

13 13);">AI-controlled greenhouses digital crop advisory GymHydro LoRaWAN SDG 2 smart agriculture VRT WSN 

References

Alam, S. A. (2024). Innovating 'AI-Kitchen Garden' for vegetable and fruit production for Canadian and US markets. Int. J. Agric. Innov. Cutting Edge Res. 2: 01-17.
Alazzai, W. K., Obaid, M. K., Abood, B. S. Z. and Alzubaidi, L. H. (2024). Smart agriculture solutions: Harnessing AI and IoT for crop management. E3S Web Conf. 477: doi:10.1051/e3sconf/202447700057.
Aldossary, M., Alharbi, H. A. and Hassan, C. A. U. (2024). Internet of Things (IoT)-enabled machine learning models for efficient monitoring of smart agriculture. IEEE Access 12: doi:10.1109/ACCESS.2024.3404651.
Bhimavarapu, P. K., Reddy, K. R. and Reddy, P. S. (2023). A Review on IoT Applications in Smart Agriculture. J. Clean. Prod. 2023: doi:10.3233/ATDE221332.
Bua, C., Adami, D. and Giordano, S. (2024). GymHydro: An innovative modular small-scale smart agriculture system for hydroponic greenhouses. Electronics 13: doi:10.3390/ electronics13071366.
Chen, W. H. and You, F. (2024). Decarbonization through smart energy management: Climate control in building-integrated rooftop greenhouses for urban agriculture across various climate conditions. J. Clean. Prod. 458: doi:10.1016/j.jclepro.2024.142544.
Choudhary, V., Guha, P., Pau, G. and Mishra, S. (2025). An overview of smart agriculture using internet of things (IoT) and web services. Environ. Sustain. Ind. 26: doi:10.1016 /j.indic.2025.100607.
Darabkh, K. A. and Al-Akhras, M. (2025). Towards optimized IoT sensor networks for smart cities: Centrality-aware position-based occlusion-driven and role dynamics solutions for clustering and routing. IEEE Internet Things J. 12: 30282-301. doi:10.1109/JIOT. 2025.3570612.
Debnath, S., Paul, M. and Debnath, T. (2023). Applications of LiDAR in agriculture and future research directions. J. Imaging 9: doi:10.3390/jimaging9030057.
Deep, G. and Verma, J. (2024). Deep learning models for fine scale climate change prediction: Enhancing spatial and temporal resolution using AI. In: Tripathi, G., Shakya, A., Kanga, S., Singh, S. K. and Rai, P. K. (eds.). Big data, artificial intelligence, and data analytics in climate change research. Singapore: Springer. pp: 81-100. doi:10.1007/978-981-97-1685-2_5
Eyre, R., Lindsay, J., Laamrani, A. and Berg, A. (2021). Within-field yield prediction in cereal crops using LiDAR-derived topographic attributes with geographically weighted regression models. Remote Sens. 13: doi:10.3390/rs13204152.
Gade, S. A., Deshmukh, P. B., Amodkar, T. A., Dhawale, M. R. and Jathar, Y. V. (2024). Smart crop advisor system using IoT and machine learning. Int. J. Emerg. Technol. Innov. Res. 11: 484-89.
Gkagkas, G., Vergados, D. J., Michalas, A. and Dossis, M. (2024). The advantage of the 5G network for enhancing the Internet of Things and the evolution of the 6G network. Sensors 24doi:10.3390/s24082455.
Hoque, A. and Padhiary, M. (2024). Automation and AI in precision agriculture: Innovations for enhanced crop management and sustainability. Asian J. Res. Comput. Sci. 17: 95-109.
Illandara, T. S., De Silva, H. L. H., Madurawala, K. S. H., Dayasena, B. R. D., Srimath, U. and Arachchillage, S. S. (2020). Smart intelligent advisory agent for farming community. In: Proc. Int. Conf. Adv. Comput. (ICAC). IEEE. pp. 392-97.
Jabbari, A., Humayed, A., Reegu, F. A., Uddin, M., Gulzar, Y. and Majid, M. (2023). Smart farming revolution: Farmer's perception and adoption of smart IoT technologies. Sustainability 15: doi:10.3390/su151914541.
Kabato, W., Getnet, G. T., Sinore, T., Nemeth, A. and Molnár, Z. (2025). Towards climate-smart agriculture: Strategies for sustainable agricultural production, food security, and greenhouse gas reduction. Agronomy 15: doi:10.3390/agronomy15030565.
Kayadibi, I. (2025). An IoT-driven framework based on sensor technology for smart greenhouses and precision agriculture. Int. J. Smart Sens. Intel. Syst. 18: doi:10.2478/ijssis-2025-0005.
Kumar, V., Sharma, K. V., Kedam, N., Patel, A., Kate, T. R. and Rathnayake, U. (2024). A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agric. Technol. 8: doi:10.1016/j.atech.2024.100487.
Lytridis, C. and Pachidis, T. (2024). Recent advances in agricultural robots for automated weeding. Agri. Eng. 6: 3279–96. doi.org/10.3390/.
Maraveas, C. (2023). Incorporating artificial intelligence technology in smart greenhouses: Current state of the art. Appl. Sci. 13: doi:10.3390/app13010014.
Narayanan, M., Sharma, A. and Ilampooranan, I. (2025). Precision agriculture and water management in India: Artificial intelligence for climate action. In: Jadhav, D. A., Khaple, S., Wable, P. S. and Chendake, A. D. (eds.). Integr. Land Water Resour. Manag. Sustain. Agric. Vol. 1. Smart Agric., Vol. 4. Singapore: Springer. pp: 17-33.
Ngozi, E. C. and Ezeagwu, O. (2019). Applications of Artificial Intelligence in Agriculture: A Review. Eng. Technol. Appl. Sci. Res. 9: 4377-83. oi:10.48084/etasr.2756.
Rahu, M. A., Karim, S., Ali, S. M., Jatoi, G. M. and Sohu, N. D. (2024). Integration of wireless sensor networks, Internet of Things, artificial intelligence, and deep learning in smart agriculture: A comprehensive survey. J. Innov. Intell. Comput. Emerg. Technol. 1: 8-22.
Rajak, P., Ganguly, A., Adhikary, S. and Bhattacharya, S. (2023). Internet of things and smart sensors in agriculture: Scopes and challenges. J. Agric. Food Res. 14: 100776-86.
Rajbonshi, M. P., Mitra, S. and Bhattacharyya, P. (2024). Agro-technologies for greenhouse gases mitigation in flooded rice fields for promoting climate-smart agriculture. Environ. Poll. 350: 123973-82.
Satoła, W. and Satoła, M. (2024). The role of artificial intelligence in precision agriculture: A review. Comput. Electron. Agric. 226: 109386-99.
Selvam, D. C. and Devarajan, Y. (2025). Investigation of emerging technologies in agriculture: An in-depth look at smart farming, nano-agriculture, AI and big data. J. Biosyst. Eng. 50: doi:10.1007/s42853-025-00258-z.
Shahab, H., Naeem, M., Iqbal, M., Aqeel, M. and Ullah, S. S. (2025). IoT-driven smart agricultural technology for real-time soil and crop optimization. Smart Agric. Technol. 10: 100847-57.
Shamshiri, R. R., Hameed, I. A., Thorp, K. R., Balasundram, S. K., Shafian, S., Fatemieh, M., Sultan, M., Mahns, B. and Samiei, S. (2021). Greenhouse automation using wireless sensors and IoT instruments integrated with artificial intelligence. In: Shamshiri, R. R. (ed.). Next-Generation Greenhouses for Food Security. IntechOpen. pp: 237-60.
Sharma, K. and Shivandu, S. K. (2024). Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture. Sens. Int. 5: 100292-301.
Sharma, M., Kumar, C. J. and Bhattacharyya, D. K. (2024). Machine/deep learning techniques for disease and nutrient deficiency disorder diagnosis in rice crops: A systematic review. Biosyst. Eng. 244: 77-92. doi.org/10.1016/j. biosystemseng.2024.05.014.
Singla, A., Kumar, S. and Kumar, A. (2024). Smart agriculture: A comprehensive review of IoT and AI applications. J. Clean. Prod. 392: 135872-90.
Talaviya, T., Shah, D., Patel, N., Yagnik, H. and Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 4: 58-73.
Taseer, A. and Han, X. (2024). Advancements in variable rate spraying for precise spray requirements in precision agriculture using unmanned aerial spraying systems: A review. Comput. Electron. Agric. 219: 108841-50.
Trentin, C., Ampatzidis, Y., Lacerda, C. and Shiratsuchi, L. (2024). Tree crop yield estimation and prediction using remote sensing and machine learning: A systematic review. Smart Agric. Technol. 9: 100556-69.
Turgut, Ö., Kok, İ. and Ozdemir, S. (2024). AgroXAI: Explainable AI-driven crop recommendation system for Agriculture 4.0.  IEEE International Conference on Big Data (IEEE BigData). Pp.10. doi:10.48550/arXiv.2412.16196.
Wang, S. (2024). Intelligent agricultural greenhouse control system based on Internet of Things and machine learning. arXiv. doi:10.48550/arXiv.2402.09488.
Zheng, H., Ma, W. and He, Q. (2024). Climate-smart agricultural practices for enhanced farm productivity, income, resilience, and greenhouse gas mitigation: A comprehensive review. Mitig. Adapt. Strateg. Glob. Change 29: 28-45.

Global Footprints