Loading...

Identification and characterization of endophytic bacteria for antibacterial activity against multi drug resistant pathogens


Citation :- Identification and characterization of endophytic bacteria for antibacterial activity against multi drug resistant pathogens. Crop Res. 60: 201-224
RIVERA CHAUHAN, DHAVAL NIRMAL, RAVI RANJAN AND PREETAM JOSHI preetam.joshi@atmiyauni.ac.in
Address : Department of Microbiology, Atmiya University, Kalawad Road, Rajkot-360 005, Gujarat, India
Submitted Date : 22-05-2025
Accepted Date : 2-06-2025

Abstract

The escalating threat of antibiotic resistance demands innovative approaches to antimicrobial discovery. This study investigated endophytic bacteria isolated from specific tissues of four medicinal plants, including Calotropis gigantea leaves and Acacia nilotica stems, as potential sources of novel antibacterial agents. Among 108 isolated endophytes, two strains demonstrated exceptional activity against multidrug-resistant (MDR) pathogens: CGL8 (isolated from C. gigantea leaves) showed potent inhibition against Salmonella typhi, Acinetobacter baumannii and carbapenem-resistant Enterobacteriaceae while ANS5 (derived from A. nilotica stems) exhibited strong efficacy against Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus in disc diffusion assays. Phylogenetic analysis of 16S rRNA sequences confirmed strain ANS5 as Escherichia fergusonii and CGL8 as Citrobacter koseri, revealing distinct clades with robust bootstrap support (>90%). Both strains exhibited unexpected antimicrobial activity against MDR pathogens, suggesting potential novel mechanisms. Further genomic exploration is warranted to identify biosynthetic gene clusters underlying their inhibitory properties. Bioactive compounds from CGL8 and ANS5 were initially separated using TLC, and the antimicrobial fraction was further analyzed by LC-MS, confirming the presence of promising antibiotic candidates. The tissue-specific isolation approach yielded these active strains, with C. gigantea leaf-derived CGL8 and A. nilotica stem-originated ANS5 representing particularly valuable resources. This study highlights C. gigantea leaves and A. nilotica stems as rich sources of antimicrobial endophytes, demonstrating tissue-specific screening as a strategic approach to discover novel antibiotics against resistant pathogens

Keywords

Antibacterial activity antibiotic-resistant bacteria endophytes medicinal plants. 

References

Abdel-Mawgoud, A. M., Lépine, F. and Déziel, E. (2010). Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86: 1323-36.
Alnajar, S. and Gupta, R. S. (2017). Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect. Genet. Evol. 54: 108-27.
Baldani, J., Caruso, L., Baldani, V. L., Goi, S. R. and Döbereiner, J. (1997). Recent advances in BNF with non-legume plants. Soil Biol. Biochem. 29: 911-22.
Balouiri, M., Sadiki, M. and Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6: 71-79.
Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.-P., Clément, C., Ouhdouch, Y. and van Wezel, G. P. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80: 1-43.
Bell, C. R., Dickie, G. A., Harvey, W. L. G. and Chan, J. W. Y. F. (1995). Endophytic bacteria in grapevine. Can. J. Microbiol. 41: 46-53.
Berdy, J. (2005). Bioactive microbial metabolites. J. Antibiot. 5: 1-26.
Brader, G., Compant, S., Mitter, B., Trognitz, F. and Sessitsch, A. (2014). Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol. 27: 30-37.
Bush, K. and Bradford, P. A. (2016). β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harbor Perspectives Med. 6: .1-10.
Chovatiya, A., Rajyaguru, R., Tomar, R. S. and Joshi, P. (2024). Revolutionizing agriculture: harnessing CRISPR/cas9 for crop enhancement. Indian J. Microbiol. 64: 59-69.
Clarridge III, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17: 840-62.
Compant, S., Samad, A., Faist, H. and Sessitsch, A. (2019). A review on the plant microbiome: ecology, functions, and emerging trends in microbial applications. J. Adv. Res. 19: 29-37.
Cundliffe, E. (2008). Control of tylosin biosynthesis in Streptomyces fradiae. J. Microbiol. Biotechnol. 18: 1485-91.
De Araújo, W. L., Lima, A. D. S., Azevedo, J. L. D., Marcon, J., Sobral, J. K. and Lacava, P. T. (2002). Manual: isolamento de microrganismos endofíticos. (In Portugues)
Demain, A. L. and Sanchez, S. (2009). Microbial drug discovery: 80 years of progress. J. Antibiot. 62: 5-16.
Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J. P. and Raoult, D. (2000). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 38: 3623-30.
Gaastra, W., Kusters, J. G., Van Duijkeren, E. and Lipman, L. J. A. (2014). Escherichia fergusoniiVet. Microbiol. 172: 7-12. doi:10.1016/j.vetmic.2014.04.016.
Gouda, S., Das, G., Sen, S. K., Shin, H. S. and Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 7: doi:10.3389/ fmicb.2016.01538.
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F. and Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895-914.
Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M. and Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79: 293-320.
Hossain, T. J. (2024). Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur. J. Microbiol. Immunol. 14: 97-115.
Hurek, T., Tan, Z., Mathan, N., Egener, T., Engelhard, M., Gyaneshwar, P. and Reinhold-Hurek. (2000). Novel nitrogen-fixing bacteria associated with the root interior of rice. In: The quest for Nitrogen Fixation in Rice. IRRI Press, Los Banos. pp: 47-62.
Jacobs, M. J., Bugbee, W. M. and Gabrielson, D. A. (1985). Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot. 63: 1262-65.
Jain, A., Jain, A., Mudaliyar, V. and Durve-Gupta, A. (2017). Isolation, characterization and application of endophytic bacteria isolated from medicinal plants. Int. Res. J. Nat. Appl. Sci4: 4-20.
Janda, J. M. and Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45: 2761-64.
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. and Hopwood, D. A. (2000). Practical Streptomyces Genetics: John Innes Foundation. Norwich Research Park, Colney. pp: 44-61.
Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. and Collins, J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell130: 797-810.
Lam, K. S. (2007). New aspects of natural products in drug discovery. Trends Microbiol. 15: 279-89.
Miao, V. and Davies, J. (2010). Actinobacteria: the good, the bad, and the ugly. Antonie Van Leeuwenhoek 98: 143-50.
Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N. and Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 25: 361-66.
Nirmal, D., Teraiya, S., Baldha, T. and Joshi, P. (2024). Studies on the effect of polyamines supplementation on growth and biochemical parameters in rose micropropagation Crop Res. 59: 239-46.
Nithyapriya, S., Lalitha, S., Sayyed, R. Z., Reddy, M. S., Dailin, D. J., El Enshasy, H. A., Luh Suriani, N. and Herlambang, S. (2021). Production, purification, and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame. Sustainability 13: doi:10.3390/su13105394.
Ongena, M. and Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-25.
Patriquin, D. G. and Döbereiner, J. (1978). Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can. J. Microbiol. 24: 734-42.
Pierson, L. S. and Pierson, E. A. (2010). Metabolism and function of phenazines in bacteria: impacts on the behaviour of bacteria in the environment and biotechnological processes. Appl. Microbiol. Biotechnol. 86: 1659-70.
Qin, S., Li, J., Chen, H. H., Zhao, G. Z., Zhu, W. Y., Jiang, C. L., Xu, L. H. and Li, W. J. (2009). Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl. Environ. Microbiol. 75: 6176-86.
Ranjan, R. and Jadeja, V. (2017). Isolation, characterization and chromatography-based purification of antibacterial compound isolated from rare endophytic actinomycetes Micrococcus yunnanensisJ. Pharm. Anal. 7: 343-47.
Senthilkumar, M., Anandham, R., Madhaiyan, M., Venkateswaran, V. and Sa, T. (2011). Endophytic bacteria: perspectives and applications in agricultural crop production. Bact. Agrobiol. Crop Ecosyst. pp: 61-96.
Stavri, M., Piddock, L. J. and Gibbons, S. (2007). Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 59: 1247-60.
Strobel, G. (2018). The emergence of endophytic microbes and their biological promise. J. Fungi4: 57. doi:10.3390/jof4020057.
Strobel, G. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products.  Microbiol. Mol. Biol. Rev.  67: 491-502. doi:10.1128/MMBR. 67.4.491-502.2003.
Tacão, M., Correia, A. and Henriques, I. (2012). Resistance to broad-spectrum antibiotics in aquatic systems: anthropogenic activities modulate the dissemination of bla CTX-M-like genes. Appl. Environ. Microbiol. 78: 4134-40.
Teraiya, S., Nirmal, D. and Joshi, P. (2023). Potential scope and prospects of plant growth-promoting microbes (PGPMs) in micropropagation technology. In: Plant-microbe interaction-recent advances in molecular and biochemical approaches. Academic Press. pp: 249-77.
Tindall, B. J., Rosselló-Móra, R., Busse, H. J., Ludwig, W. and Kämpfer, P. (2010). Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 60: 249-66.
Vasant, G., Bhatt, S., Raghav, R. and Joshi, P. (2023). Revitalization of PGPR through integrating nanotechnology for sustainable development in agriculture. In: Plant-Microbe Interaction-Recent Advances in Molecular and Biochemical Approaches. Academic Press. pp: 227-48.
Wright, G. D. (2016). Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol. 24: 862-71.
Wu, W., Chen, W., Liu, S., Wu, J., Zhu, Y., Qin, L. and Zhu, B. (2021). Beneficial relationships between endophytic bacteria and medicinal plants. Front. Plant Sci, 12:  doi:10.3389/fpls.2021.646146.
Zaghloul, R. A., Abou-Aly, H. E., Tewfike, T. A. and Ashry, N. M. (2016). Isolation and characterization of endophytic bacteria isolated from legumes and non-legumes plants in Egypt. J. Pure Appl. Microbiol. 10: 277-90.

Global Footprints