Loading...

 Effect of nano DAP on growth and yield of kharif paddy (Oryza sativa L.) in Lateritic soil of West Bengal 


DOI: 10.31830/2454-1761.2025.CR-1026    | Article Id: CR-1026 | Page : 75-81
Citation :- Effect of nano DAP on growth and yield of kharif paddy (Oryza sativa L.) in Lateritic soil of West Bengal. Crop Res. 60: 75-81
KOUSHIK BARIK, SARATH KUMAR DUVVADA, GANESH CHANDRA MALIK, MAHUA BANERJEE, SUBRATA MANDAL AND SUBHENDU BANDYOPADHYAY mahua.banerjee@visva-bharati.ac.in
Address : Department of Agronomy, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, Sriniketan- 731236, Birbhum, West Bengal, India
Submitted Date : 20-05-2025
Accepted Date : 8-06-2025

Abstract

Rice is a staple food crop vital to India's food security, yet national productivity lags far behind global leaders like China. A significant portion of applied fertilizers is lost due to inefficiencies, especially in phosphorus-deficient lateritic soils. Nano DAP, with its high nutrient use efficiency and foliar application potential, offers a promising alternative to conventional fertilizers.  To evaluate this, a field experiment was conducted to study the effect of nano DAP (Diammonium phosphate) on the growth and yield of kharif paddy (variety: IET 19148) in Lateritic soil at Palli Siksha Bhavana (Institute of Agriculture) Farm, Sriniketan, Birbhum, West Bengal, India, during July to December 2021. The experiment was laid out in a Randomized Block Design with 13 treatments, including various combinations of basal DAP application, seed treatment (ST), seedling treatment (S/L T), and foliar spray (FS) using nano DAP. Treatments ranged from 0% basal DAP with full N and K (control) to partial DAP with nano DAP applications. Nano DAP was applied as seed, seedling, and foliar treatments to assess its efficiency in enhancing nutrient use and rice productivity. The highest values of growth attributes (plant height, tiller/hill, leaf area index, dry matter accumulation per square meter and crop growth rate), yield attributes (test weight, filled grain/panicle and effective tiller per square meter), grain yield (6.06 t/ha), straw yield (6.73 t/ha)) and economics, gross return (Rs.129210/ha), net return (Rs. 67801 /ha), and B:C ratio of 2.10) were recorded at treatment T10 (50% basal DAP + ST with nano DAP @ 5 mL/kg seed + FS with nano DAP @ 2 mL/L of water at 30 days after transplanting) compared to other treatments and the lowest values were recorded at treatment T1 (0% P & 0% N Basal, no basal DAP; 100% N & K). The study revealed that 50 % DAP as basal followed by seed treatment of nano DAP and foliar spray of 2 mL nano DAP/L at 25 days after transplanting, produced higher growth and yield in rice crop with high net return and B:C ratio in Lateritic soils of West Bengal.

Keywords

Economics foliar spray nano DAP rice seed treatment ​


References

Almeida, D. S., Penn, C. J. and Rosolem, C. A. (2018). Assessment of phosphorus availability in soil cultivated with Ruzigrass. Geoderma 312: 64–73.
Al-Zubade, A. and Al-Ubori, R. N. (2024). Impact of nano-potassium foliar application on bread wheat cultivars for enhanced sustainable production. Res. Crop. 25: 388-93.
Amoah, A. A. and Tetteh, C. K. (2022). Effect of soil-applied and foliar fertilizer on rice (Oryza sativa). Afr. J. Agric. Res. 18: 657–63.
Gomez, K. A. and Gomez, A. A. (1984). Statistical procedures for agricultural research, 2nd Edn. John Wiley and Sons, New York. pp: 680.
Haque, M. A., Miah, M. N. H., Haque, M. E. and Islam, M. S. (2012). Response of nitrogen application at different growth stages on fine Aman rice (cv. Kalizira). J. Environ. Sci. Nat. Resour. 5: 199-203.
Kakar, K., Xuan, T. D., Noori, Z., Aryan, S. and Gulab, G. (2020). Effects of organic and inorganic fertilizer application on growth, yield, and grain quality of rice. Agriculture 10: doi:10.3390/agriculture10110544.
Kopittke, P. M., Lombi, E., Wang, P., Schjoerring, J. K. and Husted, S. (2019). Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ. Sci. Nano. 6: 349–58.
Mahachandramuki, E., Thirukumaran, K., Karthikeyan, R., Sivakumar, R., Sellamuthu, K. and Gnanasekaran, P. (2023). Influence of super nano urea and nano DAP on growth parameters of rice fallow cotton under high density planting system. Int. J. Plant Soil Sci. 35: 711–16. doi:10.9734/ijpss/2023/v35i193602.
Mahajan, G., Kumar, V. and Chauhan, B. S. (2017). Rice production in India. In: Chauhan, B., Jabran, K., Mahajan, G. (Eds.) Rice production worldwide. Springer, Cham. doi:10.1007/978-3-319-47516-5_3.
Mikkelsen, R. (2018). Nano fertilizer and nanotechnology: a quick look. Better Crops Plant Food 102: 18–19.
Nandini, B., Mawale, K. S. and Giridhar, P. (2023). Nanomaterials in agriculture for plant health and food safety: A comprehensive review on the current state of agro nanoscience. 3 Biotech 13: doi:10.1007/s13205-023-03470-w.
Qureshi, A., Singh, D. and Dwivedi, S. (2018). Nano fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int. J. Curr. Microbiol. Appl. Sci. 7: 3325–35.
Rameshaiah, G. N., Pallavi, J. and Shabnam, S. (2015). Nano fertilizers and nano sensors–an attempt for developing smart agriculture. Int. J. Eng. Res. Gen. Sci. 3: 314-20.
Sahoo, B. R., Dash, A. K., Mohapatra, K. K., Mohanty, S., Sahu, S. G., Sahoo, B. R., Prusty, M. and Priyadarshini, E. (2024). Strategic management of nano-fertilizers for sustainable rice yield, grain quality, and soil health. Front. Environ. Sci. 12: doi:10.3389/ fenvs.2024.1420505.
Samanta, S., Maitra, S., Tanmoy, S., Gaikwad, D., Lalichetti, S., Panda, M. and Samui, S. (2022). Comparative performance of foliar application of urea and nano urea on finger millet (Eleusine coracana L. Gaertn). Crop Res. 57: 166–70. doi:10.31830/2454-1761.2022.025.
Samui, S., Lalichetti, S., Tanmoy, S., Abha, M., Rahul, A., Maitra, S. and Praharaj, S. (2022). Growth and productivity of rabi maize as influenced by foliar application of urea and nano-urea. Crop Res. 57: 136–40. doi:10.31830/2454-1761.2022.019.
Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A. and Battaglia, M. L. (2021). Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants 10: doi:10.3390/plants10010002.
Spielman, D. J., Kolady, D. E. and Ward, P. S. (2013). The prospects for hybrid rice in India. Food Secur. 5: 651-65.
Tang, L. (2024). Soil fertility, plant nutrition and nutrient management. Plants 14: doi:10.3390/plants14010034.
Tarafdar, J. C., Raliya, R. and Mahawar, H. (2014). Development of zinc nano-fertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric. Res. 3: 257-62.
Tiwari, S., Krishnamurthy, M. V., Kumar, V., Singh, B., Rao, A., Mithra, S. V., Rai, V., Singh, A. K. and Singh, N. K. (2016) Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP Chip. PLoS ONE 11: doi.org/10.1371/journal.pone.0153610.
Yadav, M. R., Kumar, S., Lal, M. K., Kumar, D., Kumar, R., Yadav, R. K., Kumar, S., Nanda, G., Singh, J., Udawat, P., Meena, N. K., Jha, P. K., Minkina, T., Glinushkin, A. P., Kalinitchenko, V. P. and Rajput, V. D. (2023). Mechanistic understanding of leakage and consequences and recent technological advances in improving nitrogen use efficiency in cereals. Agron. 13: doi:10.3390/agronomy13020527.
 

Global Footprints