Loading...

Mitigating lead-stress in Chrysanthemum morifolium through nanoparticle applications: A novel approach in Ecological Engineering


Citation :- Mitigating lead-stress in Chrysanthemum morifolium through nanoparticle applications: A novel approach in Ecological Engineering. Crop Res. 60: 197-204
EVA M KAZMI, MOHAMAD A SHATNAWI AND AYOUP M GHRAIR mshatnawi1@yahoo.com.au
Address : Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
Submitted Date : 11-05-2025
Accepted Date : 19-06-2025

Abstract

Chrysanthemum morifolium, a globally important ornamental cut flower, is widely propagated for commercial purposes but faces limitations in conventional propagation due to slow proliferation rates. In vitro tissue culture offers a promising solution for rapid multiplication under controlled conditions. The objective of the current study is to estimate the effectiveness of nanoparticles for enhancing shoot multiplication in Chrysanthemum morifolium in the in vitro culture on Murashige and Skoog medium (MS). The results showed that nanoparticles enhanced shoot development after five weeks in the culture. Titanium nanoparticles at a concentration of 25.0 mg/L produce 13.1 shoots per explant. On the other hand, titanium nanoparticles did not positively affect shoot length or the number of leaves per explant. Microshoots cultivated on MS medium free of carbon sources had fewer developing new shoots. The supplementation of silica−phosphoric acid (H3PO4.SiO2) nanoparticles into MS medium formed a shoot length of 4.60 mm at 0.25 mg/L. Increased silica−phosphoric acid (H3PO4.SiO2) concentration did not increase the number of new shoots per explant. The addition of different silica nanoparticles did not show a significant increase in the number of new shoots. Shoot formation was stimulated when the MS medium contained sucrose and titanium or silica (SiO2) nanoparticles.  On the other hand, fresh and dry weights of explants showed a significant difference between the concentrations of titanium and silica nanoparticles examined. The results demonstrated that nanoparticle applications enhance the growth and development of Chrysanthemum morifoliumu. These findings contribute to advancing tissue culture technology and increasing the availability of C. morifolium plants

Keywords

Chrysanthemum morifolium in vitro culture nanoparticle silica nanoparticles silica−phosphoric acid titanium nanoparticles


References

Aghdaei, M., Salehi, H. and Sarmas, M. K. (2012). Effects of silver nanoparticles on Tecomella undulata (Roxb.) Seem. Micropropagation. Adv. Hortic. Sci. 26: 21-24. doi:10.13128/ahs-12748.
Albanese, A., Tang, P. S. and Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann. Rev. Biomed. Eng. 14: 1-16.  doi:10.1146/annurev-bioeng-071811-150124.
Astutik (2007). Study of plant growth regulators in the development of chrysanthemum tissue culture. Buana Sains 7: 113-21. (In Indonesian)
Chauhan, A., Verma R. Batoo, K., M., Swati K. S., Kali R., Rajesh K. R., Hadi, M., Raslan, H. and Imran, A. (2021). Structural and optical properties of copper oxide nanoparticles: A study of variation in structure and antibiotic activity. J. Mater. Res. 36: 1-14. doi:10.1557/s43578-021-00193-7.
El-Sayed, M., Salama, W. H., Rasha, G. Salim, R. G. and Taha, L. S. (2020). Relevance of nanoparticles on micropropagation, antioxidant activity and molecular characterization of Sequoia sempervirens L. Plant. Jordan J. Biol. Sci. 14: 373- 82.  doi:10.54319/jjbs/140225.
Frazier, T. P., Burklew, C. E. and Zhang, B. (2014). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco Nicotiana tabacum. Functi. Integr. Genomi. 14: 75-83. doi:10.1007/s10142-013-0341-4.
Hatamian, M., Nejad, A. R., Kafi, M., Souri, M. K. and Shahbaz, K. (2020). Nitrate improves hackberry seedling growth under cadmium application. Heliyon 6:  doi:10.1016/j.heliyon. 2020.e03247.
Henny, T., Palai, S. K. and Chongloi, L. (2021). Assessment of genetic variability, heritability and genetic advance in spray chrysanthemum (Chrysanthemum morifolium Ramat). Crop Res. 56: 336-40.
Ilahi, I., Jabeen, M. and Sadaf, N. (2007). Rapid clonal propagation of Chrysanthemum through embryogenic callus formation. Pak. J. Bot. 39: 1945-52.
Kandiel, T. A., Dillert, R. and Bahnemann, D. (2012). Titanium dioxide nanoparticles and nanostructures. Curr. Inorg. Chem. 2: 94-114. doi:10.2174/1877944111202020094.
Karim, M. Z., Amin, M. N., Azad, M. A., Begum, F., Rahman, M. M., Islam, M. M. and Alam, R. (2003). Effects of different plant growth regulators on in vitro shoot multiplication of Chrysanthemum morifolium. J. Biol. Sci. 3: 553-60. doi:10.3923/jbs.2003.553.560.
Mehrat, M., Shatnaw, M., Shibli, R., Qudah, T., Abu Malloh, S. and Al-qudah, T. (2022). Clonal propagation of Tetragonolobus palaestinus Bioss: A Jordanian medical plant. Acta Agric. Slov. 118: 1–9. doi:10.14720/aas.2022.118.3.1208.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-97. doi:10.1111/j.1399-3054.1962.tb08052.x.
Natsheh, I. Y., Elkhader, M. T., Al-Bakheit, A. A., Alsaleh, M. M., El-Eswed, B. I., Hosein, N. F., Duaa, K. and AlbadawiI, D. K. (2023).  Inhibition of acinetobacter baumannii biofilm formation using different treatments of silica nanoparticles. Antibiotics. 12: 1-18.  doi:10.3390/ antibiotics1209136.
Oliveira, Y., Pinto, F., Silva, A. L. L., Guedes, I., Biasi, L. A. and Quoirin, M. (2010). An efficient protocol for micropropagation of Melaleuca alternifolia Cheel. In Vitro Cell. Dev. Biol. Plant. 46: 192-97. doi:10.1007/s11627-010-9287-6.
Osman, A. E., Shatnawi, M., Shibli, R., Majdalawi, M., Al-Tawaha, A. R. and Qudah, T. (2021). Salts induced salinity and in vitro multiplication of Paronychia argentea. Ecol. Eng. Env. Tec.22: 55–64. doi:10.12912/27197050/139408.
Radovanovic, V., Djekic, I. and Zarkovic, B. (2015). Characteristics of cadmium and lead accumulation and transfer by Chenopodium Quinoa Will. Sustainability 12: 3789-98. doi:10.3390/su12093789.
Razzaq, A., Ammara, R., Jhanzab, H. M. Mahmood, T., Hafeez, A. and Hussain, S. (2016). A novel nanomaterial to enhance the growth and yield of wheat. J. Nanosci. Nanoechnol. 2: 55–58.
Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. and Gardea-Torresdey, J. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 59: 3485-98. doi:10.1021/jf104517j.
Sarmast, M. K. and Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Mol. Biotech. 58: 441–49. doi:10.1007/s12033-016-9943-0.
Shahrour, W. G., Shatnawi, M. A., Al-alawi, M., Shibli, R. A., Al-Qudah, T. S., Majdalawi, M. M., Al-Tawaha, A. R., Aljamamal, A. (2024a). In vitro multiplication, antimicrobial and insecticidal activity of Capparis spinosa L. Not. Bot.e Hort. Agrob. Cluj-Napoca. 52: 1-14.  doi:10.15835/nbha52113609.
Shatnawi, M. A. (2013). Multiplication and cryopreservation of Yarrow (Achillea millefolium L., Astraceae). J. Agric. Sci. Technol. 15: 163-73. URL: http://jast.modares.ac.ir/article-23-769-en.html.
Shatnawi, M., Abubaker, S., Odat, N., Al-Tawaha, A. R. and Majdalawi, M. (2021). Antimicrobial activity and micropropagation of selected Jordanian medicinal plant. J. Ecol.  Eng. 22: 151–58. doi:10.12911/22998993/137679.
Shatnawi, M., Al-Fauri, A., Megdadi, H., Al-Shatnawi, M. K., Shibli, R. A., Abu-Romman, S. and Al-Ghzawi, A. (2010). In vitro multiplication of Chrysanthemum morifolium Ramat and its responses to NaCl induced salinity. Jordan J. Biol. Sci. 3: 101-10.
Song, J. Y., Mattson, N. S. and Jeong, B. R. (2011). The efficiency of shoot regeneration from leaf, stem, petiole, and petal explants of six cultivars of Chrysanthemum morifolium. Plant Cell, Tissue Org. Cult. 107: 295- 304. doi:10.1007/s11240-011-9980-0.
SPSS (2017). Complex samples, SPSS INC., Chicago ILL: USA.
Vinkovic, T., Novák, O., Strnad, M., Goessler, W., Jurasin, D. D., Paradikovic, N. and Vrcek, I. V. (2017). Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ. Res. 156: 10–18. doi:10.1016/j.envres.2017.03.015.
Zakharova, O., Vasyukova, I., Strekalova, N and Gusev, A. (2019). Effects of silver nanoparticles on morphometric parameters of hairy birch (Betula pubescens) at various stages of micro cloning. IOP Conf. Series Earth Environ. Sci. 392: doi:10.1088/1755-1315/392/1/012024.

Global Footprints