Aghdaei, M., Salehi, H. and Sarmas, M. K. (2012). Effects of silver nanoparticles on Tecomella undulata (Roxb.) Seem. Micropropagation. Adv. Hortic. Sci. 26: 21-24. doi:10.13128/ahs-12748.
Albanese, A., Tang, P. S. and Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann. Rev. Biomed. Eng. 14: 1-16. doi:10.1146/annurev-bioeng-071811-150124.
Astutik (2007). Study of plant growth regulators in the development of chrysanthemum tissue culture. Buana Sains 7: 113-21. (In Indonesian)
Chauhan, A., Verma R. Batoo, K., M., Swati K. S., Kali R., Rajesh K. R., Hadi, M., Raslan, H. and Imran, A. (2021). Structural and optical properties of copper oxide nanoparticles: A study of variation in structure and antibiotic activity. J. Mater. Res. 36: 1-14. doi:10.1557/s43578-021-00193-7.
El-Sayed, M., Salama, W. H., Rasha, G. Salim, R. G. and Taha, L. S. (2020). Relevance of nanoparticles on micropropagation, antioxidant activity and molecular characterization of Sequoia sempervirens L. Plant. Jordan J. Biol. Sci. 14: 373- 82. doi:10.54319/jjbs/140225.
Frazier, T. P., Burklew, C. E. and Zhang, B. (2014). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco Nicotiana tabacum. Functi. Integr. Genomi. 14: 75-83. doi:10.1007/s10142-013-0341-4.
Hatamian, M., Nejad, A. R., Kafi, M., Souri, M. K. and Shahbaz, K. (2020). Nitrate improves hackberry seedling growth under cadmium application. Heliyon 6: doi:10.1016/j.heliyon. 2020.e03247.
Henny, T., Palai, S. K. and Chongloi, L. (2021). Assessment of genetic variability, heritability and genetic advance in spray chrysanthemum (Chrysanthemum morifolium Ramat). Crop Res. 56: 336-40.
Ilahi, I., Jabeen, M. and Sadaf, N. (2007). Rapid clonal propagation of Chrysanthemum through embryogenic callus formation. Pak. J. Bot. 39: 1945-52.
Kandiel, T. A., Dillert, R. and Bahnemann, D. (2012). Titanium dioxide nanoparticles and nanostructures. Curr. Inorg. Chem. 2: 94-114. doi:10.2174/1877944111202020094.
Karim, M. Z., Amin, M. N., Azad, M. A., Begum, F., Rahman, M. M., Islam, M. M. and Alam, R. (2003). Effects of different plant growth regulators on in vitro shoot multiplication of Chrysanthemum morifolium. J. Biol. Sci. 3: 553-60. doi:10.3923/jbs.2003.553.560.
Mehrat, M., Shatnaw, M., Shibli, R., Qudah, T., Abu Malloh, S. and Al-qudah, T. (2022). Clonal propagation of Tetragonolobus palaestinus Bioss: A Jordanian medical plant. Acta Agric. Slov. 118: 1–9. doi:10.14720/aas.2022.118.3.1208.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-97. doi:10.1111/j.1399-3054.1962.tb08052.x.
Natsheh, I. Y., Elkhader, M. T., Al-Bakheit, A. A., Alsaleh, M. M., El-Eswed, B. I., Hosein, N. F., Duaa, K. and AlbadawiI, D. K. (2023). Inhibition of acinetobacter baumannii biofilm formation using different treatments of silica nanoparticles. Antibiotics. 12: 1-18. doi:10.3390/ antibiotics1209136.
Oliveira, Y., Pinto, F., Silva, A. L. L., Guedes, I., Biasi, L. A. and Quoirin, M. (2010). An efficient protocol for micropropagation of Melaleuca alternifolia Cheel. In Vitro Cell. Dev. Biol. Plant. 46: 192-97. doi:10.1007/s11627-010-9287-6.
Osman, A. E., Shatnawi, M., Shibli, R., Majdalawi, M., Al-Tawaha, A. R. and Qudah, T. (2021). Salts induced salinity and in vitro multiplication of Paronychia argentea. Ecol. Eng. Env. Tec.22: 55–64. doi:10.12912/27197050/139408.
Radovanovic, V., Djekic, I. and Zarkovic, B. (2015). Characteristics of cadmium and lead accumulation and transfer by Chenopodium Quinoa Will. Sustainability 12: 3789-98. doi:10.3390/su12093789.
Razzaq, A., Ammara, R., Jhanzab, H. M. Mahmood, T., Hafeez, A. and Hussain, S. (2016). A novel nanomaterial to enhance the growth and yield of wheat. J. Nanosci. Nanoechnol. 2: 55–58.
Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. and Gardea-Torresdey, J. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 59: 3485-98. doi:10.1021/jf104517j.
Sarmast, M. K. and Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Mol. Biotech. 58: 441–49. doi:10.1007/s12033-016-9943-0.
Shahrour, W. G., Shatnawi, M. A., Al-alawi, M., Shibli, R. A., Al-Qudah, T. S., Majdalawi, M. M., Al-Tawaha, A. R., Aljamamal, A. (2024a). In vitro multiplication, antimicrobial and insecticidal activity of Capparis spinosa L. Not. Bot.e Hort. Agrob. Cluj-Napoca. 52: 1-14. doi:10.15835/nbha52113609.
Shatnawi, M. A. (2013). Multiplication and cryopreservation of Yarrow (Achillea millefolium L., Astraceae). J. Agric. Sci. Technol. 15: 163-73. URL: http://jast.modares.ac.ir/article-23-769-en.html.
Shatnawi, M., Abubaker, S., Odat, N., Al-Tawaha, A. R. and Majdalawi, M. (2021). Antimicrobial activity and micropropagation of selected Jordanian medicinal plant. J. Ecol. Eng. 22: 151–58. doi:10.12911/22998993/137679.
Shatnawi, M., Al-Fauri, A., Megdadi, H., Al-Shatnawi, M. K., Shibli, R. A., Abu-Romman, S. and Al-Ghzawi, A. (2010). In vitro multiplication of Chrysanthemum morifolium Ramat and its responses to NaCl induced salinity. Jordan J. Biol. Sci. 3: 101-10.
Song, J. Y., Mattson, N. S. and Jeong, B. R. (2011). The efficiency of shoot regeneration from leaf, stem, petiole, and petal explants of six cultivars of Chrysanthemum morifolium. Plant Cell, Tissue Org. Cult. 107: 295- 304. doi:10.1007/s11240-011-9980-0.
SPSS (2017). Complex samples, SPSS INC., Chicago ILL: USA.
Vinkovic, T., Novák, O., Strnad, M., Goessler, W., Jurasin, D. D., Paradikovic, N. and Vrcek, I. V. (2017). Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ. Res. 156: 10–18. doi:10.1016/j.envres.2017.03.015.
Zakharova, O., Vasyukova, I., Strekalova, N and Gusev, A. (2019). Effects of silver nanoparticles on morphometric parameters of hairy birch (Betula pubescens) at various stages of micro cloning. IOP Conf. Series Earth Environ. Sci. 392: doi:10.1088/1755-1315/392/1/012024.
Albanese, A., Tang, P. S. and Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Ann. Rev. Biomed. Eng. 14: 1-16. doi:10.1146/annurev-bioeng-071811-150124.
Astutik (2007). Study of plant growth regulators in the development of chrysanthemum tissue culture. Buana Sains 7: 113-21. (In Indonesian)
Chauhan, A., Verma R. Batoo, K., M., Swati K. S., Kali R., Rajesh K. R., Hadi, M., Raslan, H. and Imran, A. (2021). Structural and optical properties of copper oxide nanoparticles: A study of variation in structure and antibiotic activity. J. Mater. Res. 36: 1-14. doi:10.1557/s43578-021-00193-7.
El-Sayed, M., Salama, W. H., Rasha, G. Salim, R. G. and Taha, L. S. (2020). Relevance of nanoparticles on micropropagation, antioxidant activity and molecular characterization of Sequoia sempervirens L. Plant. Jordan J. Biol. Sci. 14: 373- 82. doi:10.54319/jjbs/140225.
Frazier, T. P., Burklew, C. E. and Zhang, B. (2014). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco Nicotiana tabacum. Functi. Integr. Genomi. 14: 75-83. doi:10.1007/s10142-013-0341-4.
Hatamian, M., Nejad, A. R., Kafi, M., Souri, M. K. and Shahbaz, K. (2020). Nitrate improves hackberry seedling growth under cadmium application. Heliyon 6: doi:10.1016/j.heliyon. 2020.e03247.
Henny, T., Palai, S. K. and Chongloi, L. (2021). Assessment of genetic variability, heritability and genetic advance in spray chrysanthemum (Chrysanthemum morifolium Ramat). Crop Res. 56: 336-40.
Ilahi, I., Jabeen, M. and Sadaf, N. (2007). Rapid clonal propagation of Chrysanthemum through embryogenic callus formation. Pak. J. Bot. 39: 1945-52.
Kandiel, T. A., Dillert, R. and Bahnemann, D. (2012). Titanium dioxide nanoparticles and nanostructures. Curr. Inorg. Chem. 2: 94-114. doi:10.2174/1877944111202020094.
Karim, M. Z., Amin, M. N., Azad, M. A., Begum, F., Rahman, M. M., Islam, M. M. and Alam, R. (2003). Effects of different plant growth regulators on in vitro shoot multiplication of Chrysanthemum morifolium. J. Biol. Sci. 3: 553-60. doi:10.3923/jbs.2003.553.560.
Mehrat, M., Shatnaw, M., Shibli, R., Qudah, T., Abu Malloh, S. and Al-qudah, T. (2022). Clonal propagation of Tetragonolobus palaestinus Bioss: A Jordanian medical plant. Acta Agric. Slov. 118: 1–9. doi:10.14720/aas.2022.118.3.1208.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-97. doi:10.1111/j.1399-3054.1962.tb08052.x.
Natsheh, I. Y., Elkhader, M. T., Al-Bakheit, A. A., Alsaleh, M. M., El-Eswed, B. I., Hosein, N. F., Duaa, K. and AlbadawiI, D. K. (2023). Inhibition of acinetobacter baumannii biofilm formation using different treatments of silica nanoparticles. Antibiotics. 12: 1-18. doi:10.3390/ antibiotics1209136.
Oliveira, Y., Pinto, F., Silva, A. L. L., Guedes, I., Biasi, L. A. and Quoirin, M. (2010). An efficient protocol for micropropagation of Melaleuca alternifolia Cheel. In Vitro Cell. Dev. Biol. Plant. 46: 192-97. doi:10.1007/s11627-010-9287-6.
Osman, A. E., Shatnawi, M., Shibli, R., Majdalawi, M., Al-Tawaha, A. R. and Qudah, T. (2021). Salts induced salinity and in vitro multiplication of Paronychia argentea. Ecol. Eng. Env. Tec.22: 55–64. doi:10.12912/27197050/139408.
Radovanovic, V., Djekic, I. and Zarkovic, B. (2015). Characteristics of cadmium and lead accumulation and transfer by Chenopodium Quinoa Will. Sustainability 12: 3789-98. doi:10.3390/su12093789.
Razzaq, A., Ammara, R., Jhanzab, H. M. Mahmood, T., Hafeez, A. and Hussain, S. (2016). A novel nanomaterial to enhance the growth and yield of wheat. J. Nanosci. Nanoechnol. 2: 55–58.
Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. and Gardea-Torresdey, J. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 59: 3485-98. doi:10.1021/jf104517j.
Sarmast, M. K. and Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Mol. Biotech. 58: 441–49. doi:10.1007/s12033-016-9943-0.
Shahrour, W. G., Shatnawi, M. A., Al-alawi, M., Shibli, R. A., Al-Qudah, T. S., Majdalawi, M. M., Al-Tawaha, A. R., Aljamamal, A. (2024a). In vitro multiplication, antimicrobial and insecticidal activity of Capparis spinosa L. Not. Bot.e Hort. Agrob. Cluj-Napoca. 52: 1-14. doi:10.15835/nbha52113609.
Shatnawi, M. A. (2013). Multiplication and cryopreservation of Yarrow (Achillea millefolium L., Astraceae). J. Agric. Sci. Technol. 15: 163-73. URL: http://jast.modares.ac.ir/article-23-769-en.html.
Shatnawi, M., Abubaker, S., Odat, N., Al-Tawaha, A. R. and Majdalawi, M. (2021). Antimicrobial activity and micropropagation of selected Jordanian medicinal plant. J. Ecol. Eng. 22: 151–58. doi:10.12911/22998993/137679.
Shatnawi, M., Al-Fauri, A., Megdadi, H., Al-Shatnawi, M. K., Shibli, R. A., Abu-Romman, S. and Al-Ghzawi, A. (2010). In vitro multiplication of Chrysanthemum morifolium Ramat and its responses to NaCl induced salinity. Jordan J. Biol. Sci. 3: 101-10.
Song, J. Y., Mattson, N. S. and Jeong, B. R. (2011). The efficiency of shoot regeneration from leaf, stem, petiole, and petal explants of six cultivars of Chrysanthemum morifolium. Plant Cell, Tissue Org. Cult. 107: 295- 304. doi:10.1007/s11240-011-9980-0.
SPSS (2017). Complex samples, SPSS INC., Chicago ILL: USA.
Vinkovic, T., Novák, O., Strnad, M., Goessler, W., Jurasin, D. D., Paradikovic, N. and Vrcek, I. V. (2017). Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ. Res. 156: 10–18. doi:10.1016/j.envres.2017.03.015.
Zakharova, O., Vasyukova, I., Strekalova, N and Gusev, A. (2019). Effects of silver nanoparticles on morphometric parameters of hairy birch (Betula pubescens) at various stages of micro cloning. IOP Conf. Series Earth Environ. Sci. 392: doi:10.1088/1755-1315/392/1/012024.










