Loading...

Comparative efficacy of indigenous Azospirillum spp. from the Saurashtra region in enhancing the growth of wheat (Triticum aestivum L.) 


Citation :- Comparative efficacy of indigenousAzospirillumspp. from the Saurashtra region in enhancing the growth of wheat (Triticum aestivum L.). Crop Res. 60: 125-132
SARVANGI RABARA AND NUTAN PRAKASH VISHWAKARMA sarvangipatel124@gmail.com
Address : Department of Microbiology, Atmiya University, Rajkot, 360005, Gujarat, India
Submitted Date : 5-05-2025
Accepted Date : 20-05-2025

Abstract

Azospirillum has been extensively used as a bio fertilizer to improve soil nutrient levels for a variety of crops. This genus, recognized for its positive impact on plant growth, offers a promising alternative to synthetic chemical fertilizers in traditional agriculture. In this study, we examined the potential of Azospirillum isolates from wheat fields in the Saurashtra region of Gujarat, India. Fifteen isolates were assessed for plant growth-promoting (PGP) traits, including the production of indole acetic acid (IAA), ammonia, phosphate solubilization, and siderophore production. All isolates were positive for IAA, ammonia and phosphate solubilization and 3 isolates were positive for siderophore production. The three most effective isolates showing close evolutionary relationships with Azospirillum sp. (SNP9), (SNP6), and (SNP3). A pot experiment was conducted to compare the effects of isolates SNP9, SNP6, and SNP3 on wheat plant growth against uninoculated controls. A 24-hour-old bacterial culture with a concentration of 108 CFU/mL was used for inoculation to evaluate significant growth parameter increases. The findings indicated significant growth enhancement in wheat plants inoculated with SNP9, moderate growth with SNP6, and minimal growth with SNP3 compared to uninoculated plants.
     

Keywords

Ammonia production Azospirillum biofertilizer indole acetic acid plant growth promotion 

References

Akter, R., Rahman, M. H., Chowdhury, M. A. R., Manirujjaman, M. and Elshenawy, S. E. (2022). Advances of nanotechnology in plant development and crop protection. In applications of computational intelligence in multi-disciplinary research. Academic Press. pp. 143-57. doi:10.1016/B978-0-12-823978-0.00007-1.
Arora, N. K. and Verma, M. (2017). Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech. 7: doi:10.1007/s13205-017-1008-y.
Bansal, R. K., Gondaliya, V. K. and Shaikh, A. S. (2017). A review of the status of the groundnut production and export of India. Indian J. Econ. Dev. 13: 369-74.
Bashan, Y. and De-Bashan, L. E. (2005). Plant growth-promoting. Encycl. Soils Environ. 1: 103-15.
Bhatt, S., Dholakia, P. R., Sorathia, D. K., Solanki, K. J., Dabhi, N. K. and Dedakiya, S. K. (2015). Isolation and biochemical characterization of halotolerant plant growth promoting rhizobacteria. Int. J. Sci. Technol. 3https://www.international journalcorner.com/index.php/theijst/article/view/124459.
Cabaj, A. and Kosakowska, A. (2009). Iron-dependent growth of and siderophore production by two heterotrophic bacteria isolated from brackish water of the southern Baltic Sea. Microbiol. Res. 164: 570-77. doi:10.1016/j.micres.2007.07.001.
Creus, C. M., Sueldo, R. J. and Barassi, C. A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can. J. Bot. 82: 273-81. doi:10.1139/b03-119.
Domingues Duarte, C. F., Cecato, U., Trento Biserra, T., Mamédio, D. and Galbeiro, S. (2020). Azospirillum spp. in grasses and forages. Rev. Mex. Cienc. Pecu. 11: 223-40. doi:10.22319/rmcp.v11i1.4951.
El Habti, A., Fleury, D., Jewell, N., Garnett, T. and Tricker, P. J. (2020). Tolerance of combined drought and heat stress is associated with transpiration maintenance and water-soluble carbohydrates in wheat grains. Front. Plant Sci. 11: doi:10.3389/fpls.2020.568693.
El-Nahrawy, S. and Yassin, M. (2020). Response of different cultivars of wheat plants (Triticum aestivum L.) to inoculation by Azotobacter sp. under salinity stress conditions. J. Adv. Microbiol. 20: 59-79.
Ferreira, C. M., Soares, H. M. and Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Sci. Total Environ. 682: 779-99. doi:10.1016/j.scitotenv.2019.04.225.
Filipini, L. D., Pilatti, F. K., Meyer, E., Ventura, B. S., Lourenzi, C. R. and Lovato, P. E. (2021). Application of Azospirillum on seeds and leaves, associated with Rhizobium inoculation, increases growth and yield of common bean. Arch. Microbiol. 203: 1033-38. doi:10.1007/s00203-020-02092-7.
Fukami, J., Nogueira, M. A., Araujo, R. S. and Hungria, M. (2016). Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Expr. 6: 1-13.  doi:10.1186/s13568-015-0171-y.
Galindo, F. S., Rodrigues, W. L., Fernandes, G. C., Boleta, E. H. M., Jalal, A., Rosa, P. A. L., S., Junior, R. J and Filho, M. C. M. T.  (2022). Enhancing agronomic efficiency and maize grain yield with Azospirillum brasilense inoculation under Brazilian savannah conditions. Euro. J. Agron. 134: doi:10.1016/j.eja.2022.126471.
Gordon, S. A. and Paleg, L. G. (1957). Quantitative measurement of indole acetic acid. Physiol. Plant. 10: 37-48.
Gray, E. J. and Smith, D. L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signalling processes. Soil Biol. Biochem. 37: 395-412. doi:10.1016/j.soilbio.2004.08.030.
Hu, Q. P. and Xu, J. G. (2011). A simple double-layered chrome azurol S agar (SD-CASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. Afr. J. Microbiol. Res. 5: 4321-27.
Ivanchenko, T. and Igolnikova, I. (2025). Effects of seed treatment compounds on physiological processes, yield dynamics and disease resistance in safflower (Carthamus tinctorius L). Res. Crop. 26: 268-78.
Kanimozhi, K. and Panneerselvam, A. (2017). Isolation and characterization of Azospirillum sp. from paddy field soil, Thanjavur District, Tamil Nadu. Int. J. Sci. Res. 6: 1193-99.
Kaur, N., Singh, B., Kaur, A., Yadav, M. P., Singh, N., Ahlawat, A. K. and Singh, A. M. (2021). Effect of growing conditions on proximate, mineral, amino acid, phenolic composition and antioxidant properties of wheatgrass from different wheat (Triticum aestivum L.) varieties. Food Chem. 341: doi:10.1016/j.foodchem.2020.128201.
Khanna, R., Pawar, J., Gupta, S., Verma, H., Trivedi, H., Kumar, P. and Kumar, R. (2019). Efficiency of biofertilizers in increasing the production potential of cereals and pulses: A review. J. Pharm. Phytochem. 8: 183-88.
Louden, B. C., Haarmann, D. and Lynne, A. M. (2011). Use of blue agar CAS assay for siderophore detection. Microbiol. Biol. Edu. 12: 51-53. doi:10.1128/jmbe.v12i1.249.
Malinich, E. A. (2017). A novel process of Azospirillum brasilense-plant interactions: Association with the bean seed. Ph.D. Thesis, Indiana University, U. S. A.
McRose, D. L., Lee, A., Kopf, S. H., Baars, O., Kraepiel, A. M. L., Sigman, D. M., Morel, F. M. M., and Zhang, X. (2019). Effect of iron limitation on the isotopic composition of cellular and released fixed nitrogen in Azotobacter vinelandii. Geochim. Cosmochim. Acta 244: 12-23. doi:10.1016/j.gca.2018.09.023.
Mehnaz, S. (2014). Azospirillum: A biofertilizer for every crop. In: Plant microbes’ symbiosis: Applied facets. New Delhi, India. pp. 297-314. doi:10.1007/978-81-322-2068-8_15.
Nascente, A. S., Ishola, Z. T., Filippi, M. C. C. D., Silva, M. A., Cruz, D. R. C. and Bezerra, G. D. A. (2023). Biochemical characterization of individual and combined plant growth-promoting microorganisms. Pesq. Agropec. Trop. 53: doi:10.1590/1983-40632023 v5375376.
Naz, S. and Perveen, S. (2021). Response of wheat (Triticum aestivum L. var. Galaxy-2013) to pre-sowing seed treatment with thiourea under drought stress. Pak. J. Bot. 53: 1209-17.
Panchal, P. J. and Patel, P. D. N. B. (2019). Structural changes in agricultural economy of Gujarat, India: Irrigation and cropping pattern aspects. e-JLSSC 2019: 58-68.
Prasad, J. K., Gupta, S. K. and Raghuwanshi, R. (2017). Screening multifunctional plant growth promoting rhizobacteria strains for enhancing seed germination in wheat (Triticum aestivum L.). Int. J. Agric. Res. 12: 64-72.
Rabara, S., Vishwakarma, N. P. and Patel, S. (2023). Isolation and Biochemical Identification of N 2 Fixing Bacteria (Azospirillium Spp.) from Saurashtra Region. Curr. Agric. Res. J. 11: 277-86. doi:10.12944/CARJ.11.1.24.
Rodrigues, A.C., Bonifacio, A., de Araujo, F.F., Junior, M.A.L. and do Vale Barreto Figueiredo, M. (2015). Azospirillum spp. as a challenge for agriculture. In: Maheshwari, D. (eds) Bacterial metabolites in sustainable agroecosystem. Sustainable Development and Biodiversity, Vol. 12. Springer, Cham. doi.org/10.1007/978-3-319-24654-3_2.
Sadeghi, H., Khazaei, F., Yari, L. and Sheidaei, S. (2011). Effect of seed osmopriming on seed germination behavior and vigor of soybean (Glycine max L.). ARPN J. Agric. Biol. Sci. 6: 39-43.
Schwyn, B. and Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. doi:10.1016/0003-2697(87)90612-9.
Searchinger, T., Hanson, C., Ranganathan, J., Lipinski, B., Waite, R., Winterbottom, R. et al. (2014). Creating a sustainable food future. A menu of solutions to sustainably feed more than 9 billion people by 2050. World resources report 2013-14: Interim findings (Doctoral dissertation, World Resources Institute (WRI); World Bank Groupe-Banque Mondiale; United Nations Environment Programme (UNEP); United Nations Development Programme (UNDP); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD); Institut National de la Recherche Agronomique (INRA).
Singh, V. P. and Maiti, R. K. (2016). Research trends in agronomic management of sorghum [Sorghum bicolor (L.) Moench]:  A review. Farm. Manage. 1: 32-44.
Tan, K. G., Low, L., Tan, K. Y. and Rao, V. K. (2013). Annual analysis of competitiveness, simulation studies and development perspective for 35 states and federal territories of India: 2000-2010. World Scientific. Pp. 1-995. doi:10.1142/9057.
Veronica, N., Sujatha, T. and Ramana Rao, P. V. (2022). Physiological characterization for abiotic stress tolerance in rice (Oryza sativa) genotypes. Crop Res. 57: 285-91.
Wang, X. L., Qiu, S. Y., Zhou, S. Q., Xu, Z. H. and Liu, X. T. (2023). Phosphate-solubilizing capacity of Paecilomyces lilacinus PSF7 and optimization using response surface methodology. Microorganisms 11: doi:10.3390/microorganisms11020454.
 

Global Footprints