Exogenous ascorbic acid priming for mitigation of salinity stress in soybean (Glycine max (L.) Merrill) cv. Indira Soy

DOI: 10.31830/2454-1761.2025.CR-998    | Article Id: CR-998 | Page : 18-27
Citation :- Exogenous ascorbic acid priming for mitigation of salinity stress in soybean (Glycine max (L.) Merrill) cv. Indira Soy. Crop Res. 60: 18-27
NAGARAJAN KIRUTHIGA. SUNDARASAMY DHANAPAL, LAKSHMANAN ARCHANA DEVI, CHINNAPPAN DEEPA JOAN OF ARC, ASMATH BAIG SHABEENA BEGUM AND KRISHNAGOWDU SARAVANAN saravanankrishnagowdu95@gmail.com
Address : Post Graduate and Research Center in Biotechnology, Arignar Anna College (Arts and Science), Krishnagiri – 635 115, Tamil Nadu, India
Submitted Date : 29-11-2024
Accepted Date : 20-03-2025

Abstract

Soil salinity, a pressing issue in arid and semi-arid regions, severely limits agricultural productivity and threatens food security. Exploring effective strategies to enhance crop resilience is crucial, particularly using natural compounds like ascorbic acid, known to mitigate stress and improve plant performance under adverse conditions. This study investigates the role of ascorbic acid in improving salt stress tolerance in soybean (Glycine max (L.) Merrill) by analysing morpho-physiological, and biochemical parameters. Soybean seeds (cv. Indira soy) were primed with ascorbic acid at concentrations of 25, 50 and 100 mg/L and inoculated into MS medium supplemented with 100 mM NaCl-induced salinity stress. Significant enhancements were observed in treated plants compared to untreated controls. Morphological improvements included a 45% increase in shoot length and a 33% rise in root biomass at 50 mg/L concentration. Photosynthetic efficiency, indicated by chlorophyll and carotenoid content, improved by 28% and 35%, respectively. The antioxidant defence was significantly enhanced, with catalase and superoxide dismutase activities increasing by 35 and 47%, respectively, while lipid peroxidation was reduced by 48%, indicating lower oxidative damage. Furthermore, osmolyte accumulation, including proline (52%) and soluble sugars (43%), contributed to better osmotic adjustment and stress resilience. The results exhibit that ascorbic acid effectively mitigates salt-induced stress in soybean by improving growth, physiological parameters, and oxidative defence mechanisms. This study underscores the potential of ascorbic acid as a cost-effective, sustainable strategy to enhance crop resilience in saline conditions, offering a promising avenue for improved agricultural productivity.

Keywords

Ascorbic acid exogenous application salt tolerance seed priming soybean

References

Aebi, H. (1984). Catalase in vitro. In: Methods in enzymology. 105: 121-26.  doi:10.1016/s0076-6879(84)05016-3.
Agami, R. (2014). Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol. Plant. 58: 341-47.
Alayafi, A. A. M. (2020). Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: transcriptional regulation mechanism. Environ. Sci. Pollu. Res. 27: 19186-99.
Alhasnawi, A. N., Che Radziah, C. M. Z., Kadhimi, A. A., Isahak, A., Mohamad, A. and Yusoff, W. M. W. (2016). Enhancement of antioxidant enzyme activities in rice callus by ascorbic acid under salinity stress. Biol. Plant. 60: 783-87.
Anitha, R., Christy Nirmala Mary, P., Sritharan, N. and Purushothaman, R. S. (2015). Effect of ascorbic acid for alleviation of salt stress in sugarcane (Saccharum officinarum L.). Res. Crop. 16: 757-63.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: doi.org/10.1104/pp.24.1.1.
Baig, Z., Khan, N., Sahar, S., Sattar, S. and Zehra, R. (2021). Effects of seed priming with ascorbic acid to mitigate salinity stress on three wheat (Triticum aestivum L.) cultivars. Acta Ecol. Sin. 41: 491-98.
Barzegar, T., Fateh, M. and Razavi, F. (2018). Enhancement of postharvest sensory quality and antioxidant capacity of sweet pepper fruits by foliar applying calcium lactate and ascorbic acid. Sci. Hortic. 241: 293-303.
Billah, M., Rohman, M. M., Hossain, N. and Uddin, M. S. (2017). Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress. Afr. J. Agric. Res. 12: 1437-46.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-54.
Bybordi, A. (2012). Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. J. Integr. Agric. 11: 1610-20.
Ebrahimian, E. and Bybordi, A. (2012). Effect of salinity, salicylic acid, silicium and ascorbic acid on lipid peroxidation, antioxidant enzyme activity and fatty acid content of sunflower. Afr. J. Agric. Res.7: 3685-94.
Fahad, S., Hussain, S., Saud, S., Hassan, S., Ihsan, Z., Shah, A. N., Wu, C., Yousaf, M., Nasim, W., Alharby, H., Alghabari, F. and Huang, J. (2016). Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature. Front. Plant Sci. 7: doi:10.3389/fpls.2016.01250.
Feghhenabi, F., Hadi, H., Khodaverdiloo, H. and Van Genuchten, M. T. (2020). Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agric. Water Manag. 231: doi:10.1016/j.agwat.2020.106022.
Foyer, C. H. and Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155: 2-18.
Gest, N., Gautier, H. and Stevens, R. (2013). Ascorbate as seen through plant evolution: the rise of a successful molecule. J. Exp. Bot. 64: 33-53.
Hameed, A., Gulzar, S., Aziz, I., Hussain, T., Gul, B. Khan, M. A. (2015). Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants 7. doi:10.1093/aobpla/plv004.
Hussein, M. M. and Alva, A. K. (2014). Effects of zinc and ascorbic acid application on the growth and photosynthetic pigments of millet plants grown under different salinity. Agric. Sci. 5: 1253-60. doi:10.4236/as.2014.513133.
Kang, S., Post, W. M., Nichols, J. A., Wang, D., West, T. O., Bandaru, V. and Izaurralde, R. C. (2013). Marginal lands: concept, assessment and management. J. Agric. Sci. 5: 129–39.
Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. and Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environ. Int. 132:  doi:10.1016/j.envint.2019.105078.
Kumazawa, S., Hamasaka, T. and Nakayama, T. (2004). Antioxidant activity of propolis of various geographic origins. Food Chem. 84: 329-39.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-82. 
Marklund, S. and Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European J. Biochem. 47: 469-74.
Munns, R. and Gilliham, M. (2015). Salinity tolerance of crops–what is the cost? New Phytol. 208:  668-73.
Noreen, S., Sultan, M., Akhter, M. S., Shah, K. H., Ummara, U., Manzoor, H., Ulfat, M., Alyemeni, M. N. Ahmad, P. (2021). Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiol. Biochem. 158:  244-254. doi:10.1016/j.plaphy.2020.11.007.
Ohkawa, H., Ohishi, N. and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:  351-58.
Radhakrishnan, R. and Lee, I. J. (2013). Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J. Plant Growth Regul. 32:  22-30.
Raza, S. H., Shafiq, F., Chaudhary, M. and Khan, I. (2013). Seed invigoration with water, ascorbic and salicylic acid stimulates development and biochemical characters of okra (Ablemoschus esculentus) under normal and saline conditions. Int. J. Agric. Biol. 15:  486-92.
Saravanan, K., Vidya, N., Appunu, C., Gurusaravanan, P. and Arun, M. (2023a). A simple and efficient genetic transformation system for soybean (Glycine max (L.) Merrill) targeting apical meristem of modified half-seed explant. 3 Biotech, 13: doi:10.1007/s13205-023-03715-8.
Saravanan, K., Vidya, N., Halka, J., Preethi, R. P., Appunu, C., Radhakrishnan, R. and Arun, M. (2023b). Exogenous application of stevioside enhances root growth promotion in soybean (Glycine max (L.) Merrill). Plant Physiol. Biochem. 201: doi:10.1016/j.plaphy.2023.107881.
Somogyi, M. (1952). Notes on sugar determination. J. Biol. Chem. 195: 19-23.
Ullah, I., Waqas, M., Khan, M. A., Lee, I. J. and Kim, W. C. (2017). Exogenous ascorbic acid mitigates flood stress damages of Vigna angularis. Appl. Biol. Chem. 60:  603-14.

Global Footprints