Hydroponically exposed lead nitrate influenced growth, antioxidant and oxidative dynamics of cucumber (Cucumis sativus) 


DOI: 10.31830/2454-1761.2025.CR-1007    | Article Id: CR-1007 | Page : 53-60
Citation :- Hydroponically exposed lead nitrate influenced growth, antioxidant and oxidative dynamics of cucumber (Cucumis sativus). Crop Res. 60: 53-60
MANNAT PARBHAKAR, PRAVEEN GULERIA AND VINEET KUMAR vineetkumar22@gmail.com
Address : Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara-144411, Punjab, India
Submitted Date : 16-03-2025
Accepted Date : 24-03-2025

Abstract

Lead is one of the most toxic heavy metals affecting plant growth and development. Lead toxicity causes serious damage to plants, ranging from seed germination to productivity. Given this, the present study documents the significant reduction in morphological and biochemical parameters of cucumber treated hydroponically with 150, 250 and 500 µM of lead nitrate. The morphological parameters of cucumber, shoot-root elongation, and fresh weight were considerably decreased with an increase in the lead nitrate concentration. Likewise, the biochemical parameters of lead nitrate treated cucumber were significantly reduced than non-treated control plants. However, the stressed cucumber showed enhanced non-enzymatic and enzymatic antioxidant parameters but were not able to regulate the oxidative stress. The present study, thus indicates the need of exploring sustainable solutions for agricultural productivity to target the abiotic stress.

Keywords

Antioxidant potential Cucumis sativus hydroponics photosynthetic ROS 


References

Abbas S. and Al-Wotaify, S. (2019). Study of some heavy metals pollution indicators for mineral configuration of soil and plant by wastes of Alexandria city-Babylon Governorate. Res. Crop. 20: 61-69.
Ahmed, D., Khan, M. M. and Saeed, R. (2015). Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves. Antioxidants 4: 394-409.
Aliyu, A. A., Mudansiru, A., Obadiah, C. D. and Dharmendra, S. (2023). Accumulation of heavy metals in autochthonous plants around Bagega Artisanal Gold Mining Village and the remediation potential of selected plants. Acta Ecol. Sin. 43: 1007-18.
Bhardwaj, P., Chaturvedi, A. K. and Prasad, P. (2009). Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L. J. Nat. Sci. 7: 63-75.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-54.
Budiman, M., Partogi, E., Kristi, A. A., Anggara, P. and Aminah, N. S. (2022). Study of the effect of physical parameters on commercial hydroponics based on internet of things (IoT): A case study of bok coy plants (Brassica rapa) and water spinach (Ipomoea quatica). J. Math. Fundam. Sci. 54. doi:10.5614/j.math.fund.sci.2022.54.2.5.
Chen, Q., Zhang, X., Liu, Y., Wei, J., Shen, W., Shen, Z. and Cui, J. (2017). Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. J. Plant Growth Regul. 81: 253-64.
D'Souza, R., Favas, P. J., Varun, M. and Paul, M. S. (2023). Dynamics of trace element bioavailability in soil: agronomic enhancement and risk assessment. Medical Geology: En route to One Health. pp: 203-16.
Fattahi, B., Arzani, K., Souri, M. K. and Barzegar, M. (2021). Morphophysiological and phytochemical responses to cadmium and lead stress in coriander (Coriandrum sativum L.). Ind. Crops Prod.  171: 113979. doi:10.1016/j.indcrop.2021.113979.
Feng, L., Gao, Z., Ma, H., He, S., Liu, Y., Jiang, J., Zhao, Q. and Wei, L. (2023). Carbonate-bound Pb percentage distribution in agricultural soil and its toxicity: Impact on plant growth, nutrient cycling, soil enzymes, and functional genes. J. Hazard Mater. 451:  doi:10.1016/ j.jhazmat.2023.131205.
Gautam, A., Sharma, P., Ashokhan, S., Yaacob, J. S., Kumar, V. and Guleria, P. (2023). Inhibitory impact of MgO nanoparticles on oxidative stress and other physiological attributes of spinach plant grown under field condition. Physiol. Mol. Biol. Plants. 29: 1897-913.
Gupta, D. K., Nicoloso, F. T., Schetinger, M. R., Rossato, L. V., Pereira, L. B., Castro, G. Y., Srivastava, S. and Tripathi, R. D. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J. Hazard Mater. 172: 479–84. 
Hadi, F. and Aziz, T. (2015). A mini review on lead (Pb) toxicity in plants. Ame. J. Biol. Life Sci. 6: 91-101.
Heath, R. L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation Arch. Biochem. Biophys. 125: 189-98.
Hoagland, D. R. and Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular No. 347, California Agricultural Experiment Station, UC Berkeley, USA.
Hussain, B., Lin, Q., Hamid, Y., Sanaullah, M., Di, L., Hashmi, R. U. L. M., Khan, M. B., He, Z. and Yang, X. (2020). Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci. Total Environ. 712: doi:10.1016/j.scitotenv. 2020.136497.
Kaur, G., Singh, H. P., Batish, D. R. and Kohli, R. K. (2012a). Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. J. Environ. Biol. 33: 265-69.
Kaur, G., Singh, H. P., Batish, D. R. and Kohli, R. K. (2012b). A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb 2+). Protoplasma 249: 1091-100. doi:10.1007/ s00709-011-0353-7.
Kgopa, P. M., Mashela, P. W. and Manyevere, A.  (2018). Accumulation of heavy metal in onion (Allium cepa) plants irrigated with treated wastewater under field conditions. Res. Crop. 19: 62-67.
Khan, M., Daud, M. K., Basharat, A., Khan, M. J., Azizullah, A., Muhammad, N., Rehman, Z. and Zhu, S. J. (2016). Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. J. Env. Sci. Pollut. Res. 23: 8431-40.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-82
McCready, R. M., Guggolz, J., Silviera, V. and Owens, H. S. (1950). Determination of starch and amylose in vegetables.  J. Anal. Chem. 22: 1156-58.
Mohamed, A. A., Dardiry, M. H., Samad, A. and Abdelrady, E. (2020). Exposure to lead (Pb) induced changes in the metabolite content, antioxidant activity and growth of Jatropha curcas (L.). Trop. Plant Biol. 13: 150-61.
Nareshkumar, A., Veeranagamallaiah, G., Pandurangaiah, M., Kiranmai, K., Amaranathareddy, V., Lokesh, U., Venkatesh, B. and Sudhakar, C. (2015). Pb-stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (Arachis hypogaea l.) cultivars. J. Agric. Sci. 6: 1283-97.
Pirzadah, T. B., Malik, B., Tahir, I., Hakeem, K. R., Alharby, H. F. and Rehman, R. U. (2020). Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in Tartary buckwheat plants. Int. Biodeterior. Biodegradation 151:doi:10.1016/j.ibiod.2020.104992.
Rajendran, S., Priya, T. A. K., Khoo, K. S., Hoang, T. K. A., Ng, H. S., Munawaroh, H. S. H., Karaman, C., Orooji, Y. and Show, P. L. (2022). A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 287: doi:10.1016/j.chemosphere.2021.132369.
Rani, M., Lathwal, M., Singh, A. N. and Chongtham, N. (2023). Effect of lead contamination on morphological attributes and biomass allocation of Bambusa balcooa (Roxb.). Int. J. Environ. Clim. 13: 67-76.
Raza Altaf, A., Teng, H., Saleem, M., Raza Ahmad, H., Adil, M. and Shahzad, K. (2021). Associative interplay of Pseudomonas gessardii BLP141 and pressmud ameliorated growth, physiology, yield, and Pb-toxicity in sunflower. Bioremediation J. 25: 178-88.
Sharma, P., Kumar, V. and Guleria, P. (2021). Naringenin alleviates lead-induced changes in mungbean morphology with improvement in protein digestibility and solubility. S. Afr. J. Bot. 140: 419-27.
Sharma, V., Singh, H., Guleria, S., Bhardwaj, N., Puri, S., Arya, S. K. and Khatri, M. (2022a). Application of superparamagnetic iron oxide nanoparticles (SPIONs) for heavy metal adsorption: A 10-year meta-analysis. ENMM. 18: doi:10.1016/j.enmm.2022.100716.
Sharma, P., Gautam, A., Kumar, V. and Guleria, P. (2022b). In vitro exposed magnesium oxide nanoparticles enhanced the growth of legume Macrotyloma uniflorum. J. Env. Sci. Pollut. Res. 29: 13635-45.
Singh, R., Gupta, S., Khare, A, K, and Tiwari, S (2024). Heavy metal contamination through wastewater irrigation on the soil and vegetables: Impact on the nutrient content and health risks. Crop Res. 59: 52-59.
Tong, S., Yang, L., Gong, H., Wang, L., Li, H., Yu, J., Li, Y., Deji, Y., Nima, C., Zhao, S., Gensang, Z., Kong, C., Wang, X. and Men, Z. (2022). Bioaccumulation characteristics, transfer model of heavy metals in soil-crop system and health assessment in plateau region, China. Ecotoxicol. Environ. Saf. 241: doi:10.1016/j.ecoenv.2022.113733.
Velikova, V., Yordanov, I. and Edreva, A. J. P. S. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. J. 151: 59-66.
Venkatachalam, P., Jayalakshmi, N., Geetha, N., Sahi, S. V., Sharma, N. C., Rene, E. R., Sarkar, S. K. and Favas, P. J. (2017). Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere 171: 544-53.
Wang, X., Huang, S., Zhu, L., Tian, X., Li, S. and Tang, H. (2014). Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon 69: 101-12.
Zhong, W., Xie, C., Hu, D., Pu, S., Xiong, X., Ma, J., Sun, L., Huang, Z., Jiang, M. and Li, X. (2020). Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress. Ecotoxicol. Environ. Saf. 187: doi:10.1016/j.ecoenv.2019.109831.

Global Footprints