Loading...

Studies on the effect of polyamines supplementation on growth and biochemical parameters in rose micropropagation


DOI: 10.31830/2454-1761.2024.CR-993    | Article Id: CR-993 | Page : 239-246
Citation :- Studies on the effect of polyamines supplementation on growth and biochemical parameters in rose micropropagation. Crop Res. 59: 239-246
DHAVAL NIRMAL, SAGAR TERAIYA, TANVI BALDHA AND PREETAM JOSHI preetam.joshi@atmiyauni.ac.in
Address : Department of Biotechnology, Atmiya University, Rajkot-360005, Gujarat, India
Submitted Date : 15-10-2024
Accepted Date : 22-10-2024

Abstract

Rose (Rosa hybrida L. cv. bush rose) micropropagules were cultivated on MS medium supplemented with polyamines (PAs) [Cadaverine (Cad), Spermidine (Spd), and Putrescine (Put)] to investigate its effects on growth and multiplication under in vitro conditions during 2023. Polyamines were added to the medium at different concentrations of 10 mM, 30 mM, and 50 mM via filter sterilization before autoclaving, to assess their impact on in vitro growth parameters, which indicate that a lower concentration of polyamines, specifically at 30 mM, significantly enhances biomass accumulation and overall plant growth, whereas higher concentrations (50 mM) tend to exert a diminishing effect. Biochemical parameters revealed that polyamines at 30 mM notably increased the levels of key biomolecules, including carbohydrates content, proteins content, and chlorophylls content, and also shows significant level of phenol content in the rose micropropagules. Furthermore, antioxidant activities, as measured by superoxide dismutase and peroxidase activities, was markedly higher in micropropagules grown on medium supplemented with 30 mM polyamines These findings suggest that low concentrations of polyamines can serve as effective growth regulators, promoting enhanced growth and biochemical responses in rose micropropagation. Therefore, incorporating polyamines, particularly at optimal concentrations, could improve the efficiency and quality of rose micropropagation protocols, benefiting commercial production and conservation efforts.

Keywords

Biochemical parameters growth parameters peroxidase polyamines rose micropropagation superoxide dismutase

References

Aggarwal, D., Upadhyay, S. K., Kumar, K., Sehrawat, N., Tuli, H. S. and Singh, R. (2020). Effects of plant growth regulators on in vitro propagation of economically important ornamental plant Rosa hybrida L. Asian J. Biol. Life Sci. 9: 227-33. doi:10.5530/ajbls.2020.9.35.
Alam, A., Kataria, P. and Nethravathy, V. (2021). Assessment of superoxide dismutase, catalase, and peroxidase activities in aspergillus sp. and cladosporium sp. J. Adv. Sci. Res12: 249-54. doi:10.55218/JASR.202112334.
Amin, A. A., Gharib, F. A., El-Awadi, M. and Rashad, E. S. M. (2011). Physiological response of onion plants to foliar application of putrescine and glutamine. Sci. Hortic129: 353-60. doi:10.1016/j.scienta.2011.03.052.
Baniasadi, F., Saffari, V. R. and Moud, A. A. M. (2018). Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Sci. Hortic. 234: 312-17. doi:10.1016/j.scienta.2018.02.069.
Chen, D., Shao, Q., Yin, L., Younis, A. and Zheng, B. (2019). Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 9: doi:10.3389/fpls.2018.01945.
Dey, A., Hazra, A. K., Nongdam, P., Nandy, S., Tikendra, L., Mukherjee, A., Banerjee, S., Mukherjee, S. and Pandey, D. K. (2019). Enhanced bacoside content in polyamine treated in vitro raised Bacopa monnieri (L.). South Afr. J. Bot.. 123: 259-69. doi:10.1016/j.sajb.2019.03.012.
El-Abagy, H. M. H., El-ShM, R., Abdel-Mawgoud, A. M. R. and El-Greadly, N. H. (2010). Physiological and biochemical effects of some bioregulators on growth, productivity and quality of artichoke (Cynara scolymus L.) plant. Res. J. Agric. Biol. Sci. 6: 683-90.
El-Bassiouny, H. M., Mostafa, H. A., El-Khawas, S. A., Hassanein, R. A., Khalil, S. I. and El-Monem, A. A. A. (2008). Physiological responses of wheat plant to foliar treatments with arginine or putrescine. 2: 1390–403.
El-Lethy, S. R., Ayad, H. S. and Talaat, I. M. (2010). Physiological effect of some antioxidants on flax plant (Linum usitatissimum L.). World J. Agric. Sci. 6: 622-29.
Huong, B. T. T., Thom, N. M. and Gioi, D. H. (2021). Research on micropropagation of green rose (Rosa L.). J. For. Sci. Technol. 11: 20-27.
Jiao, C., Lan, G., Sun, Y., Wang, G. and Sun, Y. (2021). Dopamine alleviates chilling stress in watermelon seedlings via modulation of proline content, antioxidant enzyme activity, and polyamine metabolism. J. Plant Growth Regul. 40: 277-92. doi:10.1007/s00344-020-10096-2.
Karimi, F., Hamidian, Y., Behrouzifar, F., Mostafazadeh, R., Ghorbani-HasanSaraei, A., Alizadeh, M., Mortazavi, S. M., Janbazi, M. and Naderi Asrami, P. (2022). An applicable method for extraction of whole seeds protein and its determination through Bradford’s method. Food Chem. Toxicol. 164:  doi:10.1016/j.fct.2022.113053.
Makarov, S. S., Kuznetsova, I. B., Hussien, M., Chudetsky, A. I. and Sokolkina, A. I. (2024). Features of the clonal micropropagation technology of ornamental Rose varieties ‘Dream Come True’and ‘Full Sail’. Ornam. Hortic30: 1-7. doi:10.1590/2447-536x.v30.e242732.
Özmen, S., Tabur, S., Öney-Birol, S. and Özmen, S. (2022). Molecular responses of exogenous polyamines under drought stress in the barley plants. Cytologia 87: 7-15.  doi:10.1508/cytologia.87.7.
Rajpal, C. and Tomar, P. C. (2020). Cadaverine: A potent modulator of plants against abiotic stresses: Cadaverine: A potent modulator. JMBFS 10: 205-10. doi:10. 15414/jmbfs.2020.10.2.
Rakesh, B., Sudheer, W. N. and Nagella, P. (2021). Role of polyamines in plant tissue culture: An overview. PCTOC 145: 487-506. doi:10.1007/s11240-021-02029-y.
Sequera-Mutiozabal, M. I., Erban, A., Kopka, J., Atanasov, K. E., Bastida, J., Fotopoulos, V., Alcázar, R. and Tiburcio, A. F. (2016). Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Front. Plant Sci7. doi:10.3389/fpls.2016.00173.
Shaikh, F., Khan, A., Bagwan, R., Khan, J. and Kureshi, A. S. (2023). Extraction and quantification of pigments from Indian traditional medicinal plants. Extraction 3: doi:10.5281/zenodo.7804146.
Shankar, C. U., Ganapathy, A. and Manickavasagam, M. (2011). Influence of polyamines on shoot regeneration of sugarcane (Saccharum officinalis L.). Egypt. J. Biol. 13: 44-50. doi:10.4314/EJB.V13I1.7.
Shao, J., Huang, K., Batool, M., Idrees, F., Afzal, R., Haroon, M., Noushahi, H. A., Wu, W., Hu, Q., Lu, X., Huang, G., Aamer, M., Hassan, M. U. and El Sabagh, A. (2022). Versatile roles of polyamines in improving abiotic stress tolerance of plants. Front. Plant Sci. 13: doi:10.3389/fpls.2022.1003155.
Sivanandhan, G., Mariashibu, T. S., Arun, M., Rajesh, M., Kasthurirengan, S., Selvaraj, N. and Ganapathi, A. (2011). The effect of polyamines on the efficiency of multiplication and rooting of Withania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol. Plant. 33: 2279-88. doi:10.1007/s11738-011-0768-y.
Talaat, I. M., Bekheta, M. A. and Mahgoub, M. H. (2005). Physiological response of periwinkle plants (Catharanthus roseus L.) to tryptophan and putrescine. Int. J. Agric. Biol7: 210-13.
Tandon, P. (1976). Further studies on the process of gall induction on Zizyphus and the factors involved, Doctoral dissertation, Ph. D. thesis, Jodhpur University, Jodhpur, India.
Tang, W., Newton, R. J. and Outhavong, V. (2004). Exogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine. Physiol. Plant. 122: 386-95. doi:10.1111/j.1399-3054.2004.00406.x.
Vasudevan, A., Selvaraj, N., Ganapathi, A., Kasthurirengan, S., Ramesh Anbazhagan, V., Manickavasagam, M. and Choi, C. W. (2008). Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativus L.). In vitro Cell. Dev. Biol.-Plant 44: 300-306. doi:10.1007/s11627-008-9135-0.
Vasudevan, V., Subramanyam, K., Elayaraja, D., Karthik, S., Vasudevan, A. and Manickavasagam, M. (2017). Assessment of the efficacy of amino acids and polyamines on regeneration of watermelon (Citrullus lanatus Thunb.) and analysis of genetic fidelity of regenerated plants by SCoT and RAPD markers. PCTOC 130: 681–87. doi:10.1007/s11240-017-1243-2.
Wang, Y., Gong, X., Liu, W., Kong, L., Si, X., Guo, S. and Sun, J. (2020). Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber. Plant Physiol. Biochem152: 147-56.
Wu, J., Shu, S., Li, C., Sun, J. and Guo, S. (2018). Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol. Biochem. 128: 152-62. doi:10.1016/j.plaphy.2018.05.002.
Yang, H., Fang, Y., Liang, Z., Qin, T., Liu, J. H. and Liu, T. (2024). Polyamines: pleiotropic molecules regulating plant development and enhancing crop yield and quality. Plant Biotechnol. J. 2024: doi:10.1111/pbi.14440.
Yousefi, F., Jabbarzadeh, Z., Amiri, J., Rasouli-Sadaghiani, M. and Shaygan, A. (2021). Foliar application of polyamines improves some morphological and physiological characteristics of rose. Folia Hortic. 33: 147-56. doi:10.2478/fhort-2021-0012.
Zeid, I. M. (2004). Response of bean (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress. Pak. J. Biol. Sci. 7: 219–25. doi:10.3923/pjbs.2004.219.225.

Global Footprints