Loading...

Enhancing cadmium phytoremediation in contaminated soil using sunflower (Helianthus annuus L.) with EDTA and vermicompost amendments


 

DOI: 10.31830/2454-1761.2024.CR-982    | Article Id: CR-982 | Page : 220-226
Citation :- Enhancing cadmium phytoremediation in contaminated soil using sunflower (Helianthus annuus L.) with EDTA and vermicompost amendments. Crop Res. 59: 220-226
MANOJ KUMAR, DINESH MANI, VIPIN SAHU, JEETENDRA VERMA, RUPESH KUMAR OJHA AND SURAJ PATEL manojkumar14895@gmail.com
Address : Sheila Dhar Institute of Soil Science (SDISS), Department of Chemistry, University of Allahabad, Prayagraj-211002, Uttar Pradesh, India
Submitted Date : 5-06-2024
Accepted Date : 25-07-2024

Abstract

The study hypothesis posits that EDTA, an effective chelating agent, can effectively mobilize cadmium from soil, augmenting the sunflower's natural ability to absorb and sequester heavy metals. Concurrently, vermicompost, rich in organic matter and beneficial microorganisms, enhances soil health and supports plant growth, thereby fortifying the sunflower's phytoremediative potential. The pot experiment was carried out as an overall completely randomized design (CRD) at the Sheila Dhar Institute (SDI) experimental farm, University of Allahabad, Prayagraj, in the Kharif season during the years 2023-2024. Plants were cultivated in pots with soil (5 kg) that contained varying concentrations of Cd (0, 15, 30, and 50 mg/kg), vermicompost (0 and 10 g/kg), and EDTA (0 and 2.5 mmol/kg). Plants were also cultivated in containers with clean soil (T1) as control treatment. For analyzed heavy metal (Cd) in plants with a tri-acid mixture (15 ml) containing concentrations of HNO3, H2SO4, and HClO4 in 5:1:2 ratios, use the Atomic Absorption Spectrophotometer (AAS). The result showed that the combined Treatment (T3) pot of application of Cd 0+ EDTA (2.5 mmol/kg) and vermicompost (10 g/kg) was the maximum dry biomass (14.43 g/pot) of the sunflower plant. While the maximum dose combined treatment (T12) application of Cd 50 mg/kg+ EDTA 2.5 mmol/kg and vermicompost 10 g/kg is greater than before, the maximum accumulation of Cd in the shoot and root of Helianthus annuus L. by shoot 37.16% and root 31.16%, respectively as compared to the control treatment pot Cd-50. The results indicate that the combined application of EDTA and vermicompost significantly increased cadmium uptake by sunflowers compared to untreated controls, demonstrating their synergistic effect in improving phytoremediation efficiency.

Keywords

Cadmium EDTA phytoremediation sunflower vermicompost

References

Alaboudi, K. A., Ahmed, B. and Brodie, G. (2018). Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals Agric. Sci63: 123-27.
Anum, W., Riaz, U., Murtaza, G. and Raza, M. U. (2022). Sustainable agroecosystems: recent trends and approaches in phytoremediation and rhizoremediation. Ist Edn. Bioremediation and Phytoremediation Technologies in Sustainable Soil Management, Apple Academic Press. pp: 185-204.
Baker, A. J. (1981). Accumulators and excluders‐strategies in the response of plants to heavy metals. J. Plant Nutr. 3: 643-54.
Beykkhormizi, A., Abrishamchi, P., Ganjeali, A. and Parsa, M. (2016). Effect of vermicompost on some morphological, physiological and biochemical traits of bean (Phaseolus vulgaris L.) under salinity stress. J. Plant Nutr39: 883-93.
Bhat, S. A., Bashir, O., Haq, S. A. U., Amin, T., Rafiq, A., Ali, M. and Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere 303: 1347-88.
Chopra, S. L. and Kanwar, J. S. (1999). Analytical agricultural chemistry, Kalyani Publication. pp. 489.
Consentino, B. B., Ciriello, M., Sabatino, L., Vultaggio, L., Baldassano, S., Vasto, S. and De Pascale, S. (2023). Current acquaintance on agronomic biofortification to modulate the yield and functional value of vegetable crops: A review. Horticulturae 9:  doi:10.3390/ horticulturae9020219.
Dou, X., Dai, H., Skuza, L. and Wei, S. (2019). Bidens pilosa L. hyperaccumulating Cd with different species in soil and the role of EDTA on the hyperaccumulation. Environ. Sci.  Poll. Res. 26: 25668-75.
Farid, M., Ali, S., Rizwan, M., Ali, Q., Saeed, R., Nasir, T. and Ahmad, T. (2018). Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol. Environ. Saf. 151: 255-65.
Hendershot, W. H. and Duquette, M. (1986). A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J50: 605-08.
Iqbal, B., Zhao, X., Khan, K. Y., Javed, Q., Nazar, M., Khan, I. and Du, D. (2024). Microplastics meet invasive plants: Unraveling the ecological hazards to agroecosystems. Sci. Total Environ906: doi:10.1016/j.scitotenv.2023.167756.
Kumar, C. and Mani, D. (2010). Enrichment and management of heavy metals in sewage-irrigated soil. Lap Lambert Academic Publishing, Dudweiler, Germany.
Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X. and Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contam. 28: 380-94. doi: 10.1080/15320383.2019.1592108.
Li, G., Zhao, X., Iqbal, B., Zhao, X., Liu, J., Javed, Q. and Du, D. (2023). The effect of soil microplastics on Oryza sativa L. root growth traits under alien plant invasion. Front. Ecol. Evol11: doi:10.3389/fevo.2023.1172093.
Liu, S., Yang, B., Liang, Y., Xiao, Y. and Fang, J. (2020). Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ. Sci. Poll. Res27: 16069-85.  doi:10.1007/s11356-020-08282-6.
Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y. and Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature 409: doi:10.1038/35054664.
Marchiol, L., Assolari, S., Sacco, P. and Zerbi, G. (2004). Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multi-contaminated soil. Environ. Poll. 132: 21-27.
Nguyen, K. L., Nguyen, H. A., Richter, O. and Pham, M. T. (2017). Ecophysiological responses of young mangrove species Rhizophora apiculata (Blume) to different chromium contaminated environments. Sci. Total Environ574: 369-80.
Nkoh, J. N., Ajibade, F. O., Atakpa, E. O., Abdulaha-Al Baquy, M., Mia, S., Odii, E. C. and Xu, R. (2022). Reduction of heavy metal uptake from polluted soils and associated health risks through biochar amendment: A critical synthesis. JHM Advances 6: doi:10.1016/j.hazadv. 2022.100086.
Ozyigit, I. I., Karahan, F., Yalcin, I. E., Hocaoglu-Ozyigit, A. and Ilcim, A. (2022). Heavy metals and trace elements detected in the leaves of medicinal plants collected in the southeast part of Turkey. Arab. J. Geosci. 15: 1-21.
Stoltz, E. and Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot47: 271-80.

Global Footprints