Loading...

Quantifying chlorophyll content index for efficient nitrogen management in rice (Oryza sativa L.)


DOI: 10.31830/2454-1761.2024.CR-981    | Article Id: CR-981 | Page : 196-201
Citation :- Quantifying chlorophyll content index for efficient nitrogen management in rice (Oryza sativa L.). Crop Res. 59: 196-201
R. REX IMMANUEL AND M. MIRUNA rrximmanuel@gmail.com
Address : Department of Agronomy, Faculty of Agriculture,, Annamalai University, Annamalai Nagar-608002, Tamil Nadu, India
Submitted Date : 5-06-2024
Accepted Date : 16-07-2024

Abstract

Applying nitrogen fertilizer strategically enhances rice productivity in nitrogen-deficient soils. Splitting fertilizer doses across growth stages optimizes nutrient use efficiency. Monitoring chlorophyll levels correlates closely with leaf nitrogen content, crucial for assessing crop health. Non-destructive chlorophyll content meter techniques, such as the Chlorophyll Content Index (CCI), allow for precise nitrogen management adjustments in the field. However, its critical value may differ depending on crops and varieties. Hence, to find out the critical CCI value for rice cv. ADT 43, observational trials were conducted at the Experimental Farm of Annamalai University during two seasons Kuruvai (June-Oct 2023) and Navarai (Dec-March 2024). The pooled data of the present study indicated that the average LNC (maximum tillering, panicle initiation and booting stages) has a linear relationship (R2=0.8545) with the yield of rice crop. The corresponding higher yield (>7t/ha) coincided with LNC of 3.1%. Likewise, the average CCI has a linear relationship (R2=0.9031) with the LNC of rice plants. The corresponding LNC (>7t/ha) was matched with the CCI value of 29. This CCI value of 29 is considered as the critical CCI value. CCI can be used as a decision-support tool for N-fertilization of short duration rice crop, and when CCI reduced below this critical value the farmers can fertilise the field with adequate N.

Keywords

Chlorophyll content index critical value leaf nitrogen content productivity rice

References

Cate, T. M and Perkins, T. D. (2003). Chlorophyll content monitoring in sugar maple (Acer saccharum). Tree Physiol. 23: 1077-79.
Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B. and Latouche, G. (2012). A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 146: 251-60.
Chris, B. (2023). Nitrogen fertiliser production outstrips global needs and exceeds planetary boundaries by factor of two. https://planet-tracker.org/nitrogen-fertiliser-production-outstrips-global-needs-and-exceeds-planetary-boundaries-by-factor-of-two/(Accessed on 29. 05.24).
CPG (2020). Crop Production Guide Agriculture, Directorate of Agriculture, Chepauk, Chennai - 600 005 & Tamil Nadu Agricultural University, Coimbatore-641003, India.
Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N. and Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food. 2: 198-209.
Duque, A. F., Patino, D., Colorado, J. D., Petro, E., Rebolledo, M. C., Mondragon, I. F., Espinosa, N., Amezquita, N., Puentes, O. D. and Mendez, D. (2023). Characterization of rice yield based on biomass and SPAD-Based leaf nitrogen for large genotype plots. Sensors 23: doi:10.3390/s23135917.
Guo, C. C., Yuan, X. J., Wen, Y. F., Yang, Y. G., Ma, Y. M. and Yan F. J. (2023). Common population characteristics of direct-seeded hybrid indica rice for high yield. Agron. J. 115: 1–16.
Ivanovich, C. C., Sun, T., Gordon, D. R., Ilissa and Ocko, B. (2023). Future warming from global food consumption. Nat. Clim. Chang. 13: 297-302.
Kaur, R., Singh, B., Singh, M. and Thind, S. K. (2015). Hyperspectral indices, correlation and regression models for estimating growth parameters of wheat genotypes. J. Indian Soc. Remote Sens. 43: 551-58.
Ladha, J. K., Tirol-Padre, A., Reddy, C. K., Cassman, K. G., Verma, S., Powlson, D. S., van Kessel, C., De, B., Richter, D., Chakraborty, D. and Pathak, H. (2016). Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 6: 1-9.
Liu, C., Liu, Y., Lu, Y., Liao, Y., Nie, J., Yuan, X. and Chen, F. (2019). Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. Peer J. 6: doi:10.7717/peerj.6240.
Lunagaria, M. M., Patel, H. R. and Pandey, V. (2015). Evaluation and calibration of non-invasive leaf chlorophyll meters for wheat. J. Agromet. 17: 51–54.
Omara, P., Aula, L., Oyebiyi, F. and Raun, W. R. (2019). World cereal nitrogen use efficiency trends: review and current knowledge. Agrosyst. Geosci. Environ. 2: 1–8.
Opti-Sciences (2017). CCM-200 plus Chlorophyll Content Meter Web Manual. Hudson, USA, https://www.adc.co.uk/wp-content/uploads/2013/09/CCM-200-plus-manual-1.pdf
Rex Immanuel, R., Sasikumar, T. S., Sudhagar Rao, G. B., Dhanasekaran, K., Baradhan, G., Ravikumar, C. and Nambi. J. (2023). Evaluating of abiotic stress tolerance-inducing substances on the growth, physiology and yield of rice (Oryza sativa L.). Res. Crop. 24: 447-57.
Richardson, A. D., Duigan, S. P. and Berlyn, G. P. (2002). An evaluation of non-invasive methods to estimate foliar chlorophyll content. New Phytol. 153: 185-94.
Rutting, T., Aronsson, H. and Delin, S. (2018). Efficient use of nitrogen in agriculture. Berlin: Springer. doi:10.1007/s10705-017-9900-8.
Statistica, (2024). Production of fertilizers worldwide from 2005 to 2021, by nutrient. https://www.statista.com/statistics/1290786/global-fertilizer-production-by-nutrient/ (Accessed on 29. 05.24).
Surajit, M., Kumar, R., Janki S. M., Anchal, D., Sanjeev, K., Kumar Varun Vijay, K.V., Manisha, K., Khan S. R. and Singh, V. K. (2023). Grain nitrogen content and productivity of rice and maize under variable doses of fertilizer nitrogen. Heliyon 9: doi:10.1016/ j.heliyon.2023.e17321.
Uchino, H., Watanabeab, T., Ramua, K., Sahrawata, K. L., Marimuthuc, S., Wania S. P. and Itod, O. (2013). Calibrating chlorophyll meter (Spad-502) reading by specific leaf area for estimating leaf nitrogen concentration in sweet sorghum. J. Plant Nut. 36: 1640-46.
Wang, Y., Wang, D., Shi, P. and Omasa, K. (2014). Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still colour camera under natural light. Plant Methods 10: doi:10.1186/1746-4811-10-36.
Wang, Z., Zhang, W., Beebout, S. S., Zhang, H., Liu, L. and Yang, J. (2016). Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crop Res. 193: 54–69.
Wim de Vries (2021). Impacts of nitrogen emissions on ecosystems and human health: A mini review. Cur. Opi. Environ. Sci. Health. 21: doi:10.1016/j.coesh.2021.100249.
Xiong, D. L., Chen, J., Yu, T. T., Gao, W. L., Ling, X. X. and Li, Y. (2015). SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep. 5: 1–12.
Yoshida, S. D., Forno, A., Cook, J. H. and Gomez, K. A. (1976). Laboratory Manual for Physiological Studies of Rice, 3rd Edn., IRRI, Philippines. pp. 76.
Yu, F., Bai, J., Jin, Z., Zhang, H., Guo, Z. and Chen, C. (2022). Research on precise fertilization method of rice tillering stage based on UAV hyperspectral remote sensing prescription map. Agron. 12: doi:10.3390/agronomy12112893.
 
 

Global Footprints