Loading...

Standardization and selection of organic solvent and extraction parameters for charantin in bitter gourd (Momordica charantin L.) fruits


 

DOI: 10.31830/2454-1761.2024.CR-976    | Article Id: CR-976 | Page : 167-172
Citation :- Standardization and selection of organic solvent and extraction parameters for charantin in bitter gourd (Momordica charantin L.) fruits. Crop Res. 59: 167-172
GAJANAN J. SOLUNKE AND ARUNAVA DAS das.arunava2022@gmail.com
Address : Mandsaur University, Revas Devda Bypass Square,, Mandsaur, Madhya Pradesh, 458001 India
Submitted Date : 11-05-2024
Accepted Date : 10-06-2024

Abstract

Bitter gourd (Momordica charantia L. Cucurbitaceae) is an important vegetable and medicinal crop that is grown in several tropical countries such as India, China, Malaysia, Bangladesh, part of Africa, Central North America, South North Asia, Singapore, Japan, and Vietnam. It is also used as raw fruit juice for cooking fruits and vegetable dishes. The fruits, leaves, and seeds of this plant contain charantins, which are insulin-like compounds. Therefore, it is essential to develop nutrient-rich extracts that are more effective for diabetes. Ethanol and methanol are edible solvents that enable the preparation of charantin-rich extracts. Experiments were conducted on charantin extraction using ethanol and methanol in a Soxhlet apparatus. The study concluded that methanol is a better solvent for the production of charantin-rich extracts. Methanolic extracts had fewer impurities, less chlorophyll interference in the analysis, and better peak strength. The results of the study showed that there was 380–990 ug/g dry fruit powder dry weight content of charantin-level expression in fruit dried powder in methanolic extract, compared with ethanolic extract, which was 200–700 ug/g dry weight. The data show the significance of the use of methanol for bitter gourd charantin extraction.

Keywords

Antidiabetic ethanol insulin methanol soxhlet 

References

Ahamad, J., Amin, S. and Mir, S. R. (2015). Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology. J. Pharm. Bioallied Sci. 7: 304-07. doi:10.4103/0975-7406.168032.
Ayhan, A., Unal, H. and Alpsoy, H. C. (2013). Effect of the moisture content on the physical properties of bitter gourd seed. J. Int. Agrophysics 27:  doi:10.2478/intag-2013-0016.
Barky, A. R., Hussein, S. A., Eldeen, A. E., Hafez, Y. A. and Mohamed, T. M.  (2017). Saponins and their potential role in diabetes mellitus. Diabetes Manag. 7: 148-58.
Biswas, I., Mandal, S., Samadder, M. and Mukherjee, S. (2018).  Drying characteristics of bitter gourd (Momordica charantia).  J. Crop Weed 14: 111-16.
Desai, S. and Tatke, P. (2015). Charantin: An important lead compound from Momordica charantia for the treatment of diabetes. J. Pharmacog. Phytochem. 3: 163-66.
Gayathry, K. S. and John, J. A. (2022). A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. Food Prod. Process. Nutr. 4: doi:10.1186/s43014-022-00089-x.
Gupta, M., Sharma S., Gautam, A. and Bhadauria, R. (2011). Momordica charantia Linn. (Karela): Nature's silent healer. Int. J. Pharma. Sci. Rev. Res. 11: 32-37.
Hamid, M. and Elsaman, T. (2017). A stability-indicating RP-HPLC-UV method for determination and chemical hydrolysis study of a novel naproxen prodrug. J. Chem. 2017: doi:10.1155/2017/5285671.
Jia, S., Shen, M., Zhang, F. and Xie, J.  (2017). Recent advances in Momordica charantia: Functional components and biological activities. Int. J. Mol. Sci. 18: doi:10.3390/ ijms18122555.
Kim, Y. K., Park, W. T., Romij, M., Kim, Y. B., Bae, H., Kim, H. H., Park, K. W. and Park, S. U. (2014). Variation of charantin content in different bitter melon cultivars. Asian J. Chem. 26: 309-10. doi:10.14233/ajchem.2014.15338.
Kosanovic, M., Hasan, M. Y., Petroianu, G., Marzouqi, A., Abdularhman, O. and Adem, A. (2009). Assessment of essential and toxic mineral elements in bitter gourd (Momordica Charantia) fruit. Int. J. Food Properties 12: 766-73. doi:10.1080/10942910802054312.
Pitipanapong, J., Chitprasert, S., Goto M., Jiratchariyakul, W., Sasaki, M. and Shotipruk, A. (2007). New approach for extraction of charantin from Momordica charantia with pressurized liquid extraction. Sep. Purif. Technol. 52: 416-22. doi:10.1016/j.seppur.2005.11.037.
Poolperm, S. and Jiraungkoorskul, W. (2017). An update review on the anthelmintic activity of bitter gourd, Momordica charantia. Phcog. Rev. 11: 31–34. doi:10.4103/phrev.phrev_ 52_16.
Saini, R. K. and Keum, Y. S. (2017). Characterization of nutritionally important phytoconstituents in bitter melon (Momordica charantia L.) fruits by HPLC–DAD and GC–MS. J. Food Meas. Charact. 11: doi:10.1007/s11694-016-9378-0.
Sing, T., Sophie, P., Costas, S. and Paul, R. (2014). Extraction of flavonoids from bitter melon. Food Nutr. Sci. 05: 458-65.  doi:10.4236/fns.2014.55054.
Singh, V. and Maiti, R. K. (2020). Active substances and bitter ingredients in medicinal plants: An overview. Farm. Manage. 5: 39-53.
Sundari, A. R., Neelamegam, P. and Subramanian, C. V. (2013). An experimental study and analysis on solar drying of bitter gourd using an evacuated tube air collector in Thanjavur, Tamil Nadu, India. Conference Papers in Science 2013: doi:10.1155/2013/125628.
Tiwari, I., Upadhyay, A., Ansari, F., Rana, G. K., Deshmukh, K. K., Patidar, S, Nayak, P. S. and Singh, A. (2021). effect of drying methods on proximates, sensorial quality and shelf life of dehydrated bitter gourdBiological Forum-An Int. J. 13: 51-58.         
Zahid, A., Ramzan, F. M. and Ahmed, S. (2019). Bitter gourd as the potential source of various bioactive compounds and its use for different diseases: a review. Sci. Lett. 7: 99-103.
Zaini, A. S. C., Noor, A. Aris, A., Putra, N. R., Hasib, S. A., Kamaruddin, M. J., Idham, Z. and Yunus, M. A. (2018). Comparison of charantin extract from Momordica charantia using modified supercritical carbon dioxide and soxhlet extraction method. Malays. J. Fundam.  Appl. Sci. 14: 462-66. doi:10.11113/mjfas.v14n4.1092.
        

Global Footprints