Aiman, S. and Malik, A. (2017). Mutagenicity of wastewater extracts from pulp and paper industry. J. Environ. Prot. 8: 206-13. doi:10.4236/jep.2017.82016.
Ayangbenro, A. S. and Babalola, O. O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Bio sorbents. Int. J. Environ. Res. Pub. Health.14: doi:10.3390/ijerph14010094.
Cabral, J. R., Freitas, P. S. L., Bertonha, A. and Muniz, A. S. (2020). Effects of wastewater from a cassava industry on soil chemistry and crop yield of lopsided oats (Avena strigosa Schreb.). Braz. Arch. Tech. 53: 19-26. doi:10.1590/S1516-89132010000100003.
Dhankhar, R., Chhikara, S., Rana, L. and Sangwan, S. (2009). Impact assessment of soils treated with refinery effluent. Euro. J. Soil Biol. 45: 459–65. doi:10.1016/j.ejsobi.2009.06.002.
Galal, T. M. (2016). Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils. Environ. Monit. Assess. 188: doi:10. 1007/s10661- 016-5448-3.
Galal, T. M., Hassan, L. M., Ahmed, D. A., Alamri, S. A. M., Alrumman, S. A. and Eid, E. M. (2021). Heavy metals uptake by the global economic crop (Pisum sativum L.) grown in contaminated soils and its associated health risks. PLOS ONE 16: doi:10.1371 /journal.pone.0252229.
Hayat, S., Ahmad, I., Azam, Z. M., Ahmad, A. and Inam, S. A. (2021). Effect of long-term application of oil refinery wastewater on soil health with special reference to microbiological characteristics. Biores. Technol. 84: 159-63. doi:10.1016/S0960-8524(02)00027-5.
Khatoon, K. and Malik, A. (2021). Cyto-genotoxic potential of petroleum refinery wastewater mixed with domestic sewage used for irrigation of food crops in the vicinity of an oil refinery. Heliyon 7: doi:10.1016/j.heliyon.2021.e08116.
Konwar, D. and Jha, D. K. (2019). Response of rice (Oryza sativa L.) to contamination of soil with refinery effluents under natural conditions. Biol. Environ. Sci. 5: 14-22.
Lang, C. A. (1958). Simple micro-determination of Kjeldahl nitrogen is biological material. Ann. Chem. 30: 1692-94. doi:10.1021/AC60142A038.
Lee, U. S., Ten, H. F., Provan, F., Kaiser, W. M., Mayer, C. and Lillo, C. (2004). Mutations in regulatory phosphorylation sites of tobacco nitrate reductase result in high nitrite excretion and NO emission from leaf and root tissue. Planta 219: 59-65. doi:10,1007/s00425-004-1209-6.
Messaoud Laib, Zouhir Djerrou, Nabila Souilah, Mohamed El Moncef Bentchikou (2020). Valorization of olive mill wastewaters by composting process in the germination of soybean. Res. Crop. 21: 70-75.
Sangwan, S. (2023). Penicillium janthinellum biomass- a bio-sorbent for lead and chromium. Int. J. Res. Eng. Appl. Sci. 13: 10-17.
Sangwan, S., Rathee, N., Sarita and Dhankhar, R. (2022). Effects of refinery effluent on sugars in Triticum aestivum. Int. J. Adv. Res. Eng. Appl. Sci. 11: 31-38
Sangwan, S., Sehra, A., Rathee, N. and Dhankhar, R. (2023). A study on impact evaluation of refinery effluent on wheat crop at seedling stage. J. Interdisc. Multidisc. Res. 18: 53-64.
Sokal, R. R. and Rohlf, E. F. (1995). Biometry: The principles and practice of statics in biological research, 2nd ed. W. H. freeman, New York.
Srivastava, H. S. (1975). Distribution of nitrate reductase in ageing bean seedling. Plant Cell Physiol. 16: 995-99. doi:10.1093/OXFORDJOURNALS.PCP.A075245.
Vishwakarma, H., Mani, D., Shukla, D. P. and Sahu, V. (2023). Phytoremediation of heavy metals (Cr and Pb) from sewage irrigated soil of tropical sub-humid region of Indo-Gangetic plain using Amaranthus viridis. Crop Res. 58: 170-77.
Yu-Fan, F., Zhong, W. Z. and Shu, Y. (2018). Putative connections between nitrate reductase S-nitrosylation and NO synthesis under pathogen attacks and abiotic stress. Plant Sci. 9: doi:10.3389/fpls.2018.00474.
Ayangbenro, A. S. and Babalola, O. O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Bio sorbents. Int. J. Environ. Res. Pub. Health.14: doi:10.3390/ijerph14010094.
Cabral, J. R., Freitas, P. S. L., Bertonha, A. and Muniz, A. S. (2020). Effects of wastewater from a cassava industry on soil chemistry and crop yield of lopsided oats (Avena strigosa Schreb.). Braz. Arch. Tech. 53: 19-26. doi:10.1590/S1516-89132010000100003.
Dhankhar, R., Chhikara, S., Rana, L. and Sangwan, S. (2009). Impact assessment of soils treated with refinery effluent. Euro. J. Soil Biol. 45: 459–65. doi:10.1016/j.ejsobi.2009.06.002.
Galal, T. M. (2016). Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils. Environ. Monit. Assess. 188: doi:10. 1007/s10661- 016-5448-3.
Galal, T. M., Hassan, L. M., Ahmed, D. A., Alamri, S. A. M., Alrumman, S. A. and Eid, E. M. (2021). Heavy metals uptake by the global economic crop (Pisum sativum L.) grown in contaminated soils and its associated health risks. PLOS ONE 16: doi:10.1371 /journal.pone.0252229.
Hayat, S., Ahmad, I., Azam, Z. M., Ahmad, A. and Inam, S. A. (2021). Effect of long-term application of oil refinery wastewater on soil health with special reference to microbiological characteristics. Biores. Technol. 84: 159-63. doi:10.1016/S0960-8524(02)00027-5.
Khatoon, K. and Malik, A. (2021). Cyto-genotoxic potential of petroleum refinery wastewater mixed with domestic sewage used for irrigation of food crops in the vicinity of an oil refinery. Heliyon 7: doi:10.1016/j.heliyon.2021.e08116.
Konwar, D. and Jha, D. K. (2019). Response of rice (Oryza sativa L.) to contamination of soil with refinery effluents under natural conditions. Biol. Environ. Sci. 5: 14-22.
Lang, C. A. (1958). Simple micro-determination of Kjeldahl nitrogen is biological material. Ann. Chem. 30: 1692-94. doi:10.1021/AC60142A038.
Lee, U. S., Ten, H. F., Provan, F., Kaiser, W. M., Mayer, C. and Lillo, C. (2004). Mutations in regulatory phosphorylation sites of tobacco nitrate reductase result in high nitrite excretion and NO emission from leaf and root tissue. Planta 219: 59-65. doi:10,1007/s00425-004-1209-6.
Messaoud Laib, Zouhir Djerrou, Nabila Souilah, Mohamed El Moncef Bentchikou (2020). Valorization of olive mill wastewaters by composting process in the germination of soybean. Res. Crop. 21: 70-75.
Sangwan, S. (2023). Penicillium janthinellum biomass- a bio-sorbent for lead and chromium. Int. J. Res. Eng. Appl. Sci. 13: 10-17.
Sangwan, S., Rathee, N., Sarita and Dhankhar, R. (2022). Effects of refinery effluent on sugars in Triticum aestivum. Int. J. Adv. Res. Eng. Appl. Sci. 11: 31-38
Sangwan, S., Sehra, A., Rathee, N. and Dhankhar, R. (2023). A study on impact evaluation of refinery effluent on wheat crop at seedling stage. J. Interdisc. Multidisc. Res. 18: 53-64.
Sokal, R. R. and Rohlf, E. F. (1995). Biometry: The principles and practice of statics in biological research, 2nd ed. W. H. freeman, New York.
Srivastava, H. S. (1975). Distribution of nitrate reductase in ageing bean seedling. Plant Cell Physiol. 16: 995-99. doi:10.1093/OXFORDJOURNALS.PCP.A075245.
Vishwakarma, H., Mani, D., Shukla, D. P. and Sahu, V. (2023). Phytoremediation of heavy metals (Cr and Pb) from sewage irrigated soil of tropical sub-humid region of Indo-Gangetic plain using Amaranthus viridis. Crop Res. 58: 170-77.
Yu-Fan, F., Zhong, W. Z. and Shu, Y. (2018). Putative connections between nitrate reductase S-nitrosylation and NO synthesis under pathogen attacks and abiotic stress. Plant Sci. 9: doi:10.3389/fpls.2018.00474.