Loading...

Impact of nitrogen and sulphur application on the growth and yield of groundnut (Arachis hypogeae L.)

 


DOI: 10.31830/2454-1761.2024.CR-972    | Article Id: CR-972 | Page : 138-142
Citation :- Impact of nitrogen and sulphur application on the growth and yield of groundnut (Arachis hypogeae L.). Crop Res. 59: 138-142
BALAGANGATHAR K., C. KALAIYARASAN, S. KANDASAMY, S. MADHAVAN AND S. JAWAHAR Kalai77.agri@gmail.com
Address : Department of Agronomy, Faculty of Agriculture, Annamalai University, Annamalai Nagar - 608 002, Tamil Nadu, India
Submitted Date : 25-03-2024
Accepted Date : 17-04-2024

Abstract

The domestic demand for vegetable oils and fats has been rising rapidly, @ 6 per cent per annum, but our domestic output has been increasing at just about 2 per cent per annum. In India, the average yield of most oilseeds is extremely low as compared to other countries of the world. Therefore, field experiments were conducted at an experimental farm, Annamalai University during the Kharif season in 2022 and 2023 to study the effect of nitrogen and sulphur on the growth and yield of groundnut. The experiment consisted of sixteen treatments and was laid out in a factorial randomized block design with three replications. The treatment consisted of Factor A (nitrogen levels): 0, 17, 25, 34 Kg N/ha and Factor B (sulphur levels): 0, 20, 40, 60 Kg S/ha. Among the different nitrogen levels tried, application of 34 kg N/ha registered higher growth and yield attributes and yield of groundnut. Regarding sulphur levels, maximum growth, yield attributes and yield of groundnut were influenced by the application of sulphur @ 60 kg/ha (S4). With respect to various interaction effects, the application of 34 kg N/ha along with 60 kg S/ha has a significant effect on growth and yield attributes which ultimately results in the maximum yield of groundnut.

Keywords

Groundnut growth nitrogen sulphur yield

References

Abilash, B. N., Ravi, M. V., Naik, A. and Latha, H. S. (2019). Effect of different sources and levels of sulphur on yield, sulphur uptake and quality of rainfed sunflower (Helianthus annus L.). J. Pharmacog. Phytochem8: 1385-88.
Aier, I. and Nongmaithem, D. (2020). Response of groundnut (Arachis hypogaea L.) to lime and different levels of Sulphur. IJBSM 11: 585-89.
Anas, M., Jabbar, A., Sarwar, M. A., Ullah, R., Abuzar, M. K., Ijaz, A. and Latif, S. (2017). Intercropping sunflower with mungbean for improved productivity and net economic return under irrigated conditions. Pak. J. Agric. Res. 30: 338-45. doi:10.17582/journal.pjar /2017/30.4.338.345.
Bhadiyatar, A. A., Patel, J. M., Patel, P. M. and Malav, J. K. (2022). Effect of potassium and sulphur on growth, yield attributes and yield of summer groundnut in loamy sand. The Pharm. Innov. J. 11: 2704-07.
Bijarnia, A., Sharma, O. P., Kumar, R., Kumawat, R. and Choudhary, R. (2019). Effect of nitrogen and potassium on growth, yield and nutrient uptake of sesame (Sesamum indicum L.) under loamy sand soil of Rajasthan. J. Pharmacog. Phytochem. 8: 566-70.
Chakraborty, M., Rao, M. M. L. C. P. and Rao, C. S. (2019). Response of groundnut (Arachis hypogaea L.) to nitrogen levels and plant geometry. AAJ 66: 606-09.
Chaudhary, J. H., Ramdev, R., Sutaliya, S. and Desai, L. J. (2015). Growth, yield, yield attributes and economics of summer groundnut (Arachis hypogaea L.) as influenced by integrated nutrient management. J. Appl. Nat. Sci. 7: 369-72. doi:10.31018/jans.v7i1.618.
Dileep, D., Singh, V., Tiwari, D., George, G. S. and Swathi, P. (2021). Effect of variety and sulphur on growth and yield of groundnut (Arachis hypogaea L.). BFIJl 13: 475-78. doi:10.13140/RG.2.2.31245.67044.
Kamal, Dhaka, A. K., Singh, B., Kamboj, E., Preeti and Sharma, A. (2024). Effect of phosphorus and sulphur levels on biomass partitioning in groundnut (Arachis hypogaea L.). Res. Crop. 25: 57-64.
Mandeewal, R. L., Soni, M. L., Gulati, I. G., Yadava, N. D., Nangiya, V. and Kumawat, A. (2022). Effect of irrigation and nitrogen on yield and water productivity of groundnut (Arachis hypogaea) and cluster bean (Cyamopsis tetragonoloba).  Ann. Plant. Soil Res. 24: 282-87. doi:10.47815/apsr.2022.10162.
Palsande, V. N., Nagrale, M. R., Kasture, M. C., Gokhale, N. B., Dhekale, J. S. and Salvi, V. G. (2019). Growth, yield and quality of Kharif groundnut (Arachis hypogaea L.) as affected by different levels of nitrogen, potassium and zinc in lateritic soils of Konkan. J. Pharmacog. Phytochem. 8: 790-94.
Panse, V. G. and Sukhatme, P. V. (1978). Statistical Methods for Agricultural Workers. ICAR. Publication, New Delhi.
Patel, T., Patel, R. A. and Patel, P. (2022). Effect of irrigation scheduling and nitrogen management on growth and yield of summer groundnut (Arachis hypogaea L.). The Pharm Innov J, 11: 1623-27.
Ramya, P. and Singh, R. (2022). Effect of gypsum and boron on growth and yield of groundnut (Arachis hypogaea L.). The Pharm Innov J. 11: 2148-51.
Ravikumar, C., Ariraman, R., Ganapathy, M. and Karthikeyan, A. (2020). Effect of different sources and levels of sulphur on growth and nutrient uptake of irrigated summer groundnut (Arachis hypoagea L.) cv. VRI-2 for loamy soils. Plant Arch., 20: 1947-52.
Ravikumar, P., Reddy, D. S. and Reddy, P. B. (2021). Influence of sulphur and micronutrients on growth and yield of sunflower (Helianthus annuus L.). Leg. Res. 44: 582-87.
Sowmya, N., Ramesh Babu, P. V., Reddy, V. U. B. and Kavitha, P. (2022). Effect of different land configurations and spacings on growth and yield of groundnut (Arachis hypogaea) in scarce rainfall zone of Andhra Pradesh. Farm. Manage. 7: 9-13.
Sujatha, V., Saritha. R., Bhanu, S. H., Sirisha, A. B. M. and Rao, S. G. (2021). Effect of sulphur on growth, yield and economics of sesame (Sesamum indicum). Int. J. Agric. Sci. 17: 233-36. doi:10.15740/HAS/IJAS/17-AAEBSSD/233-236.
Waghmode, B. D., Kambale, A. S., Navhale, V. C., Chendge, P. D. and Mahadkar, U. V. (2017). Effect of plant population and fertilizer doses on yield attributes, yield and economics of summer groundnut. Int J. Curr. Microbiol. Appl. Sci. 6: 2670-75. doi:10.20546/ ijcmas.2017.611.314.

Global Footprints