Loading...

Impact of power plant fly ash on heavy metal accumulation in the environment, crop root, shoot, endosperm and crop yield


DOI: 10.31830/2454-1761.2024.CR-963    | Article Id: CR-963 | Page : 143-148
Citation :- Impact of power plant fly ash on heavy metal accumulation in the environment, crop root, shoot, endosperm and crop yield. Crop Res. 59: 143-148
BISWAJIT PAUL, SANCHARINI SEN, PALASH PAN AND NANDAN BHATTACHARYYA bhattacharyya_nandan@rediffmail.com
Address : Department of Zoology, Panskura Banamali College (Autonomous), Panskura R. S., Purba Medinipur-721152, West Bengal, India
Submitted Date : 14-02-2024
Accepted Date : 15-04-2024

Abstract

The disposal of fly ash from coal-fired power stations poses significant environmental challenges, particularly near thermal power plants like the Kolaghat Thermal Power Station in West Bengal, India. Therefore, a study was conducted in 2022 – 2023 at the Department of Zoology, PanskuraBanamali College, West Bengal to study the impact of fly ash contamination on soil, water, and crops within a 5km radius of the plant. Heavy metals such as Cu, Fe, Pb, Zn, and Mn were analysedthrough AAS in soil, water, shoot, root, and rice endosperm.The bioabsorption coefficient, bioconcentration factor, and translocation factor for heavy metalbioaccumulation were examined. The impact of different concentrations of fly ash on crop yield was determined by measuring the mean shoot length, mean seed stalk length, mean number of seeds per stalk, and mean dry weight of endosperm per stalk.The study revealed the highest heavy metal concentrations in soil, with Fe, Mn, Cu, Zn, and Pb being the most abundant. Plants exhibited hyper-accumulation of Cu, Zn, and Mn, while Pb and Fe showed moderate translocation. Rice grown with fly ash showed optimal growth at 1% concentration, similar to 5%, but higher concentrations reduced yield. Future research should focus on plant metal absorption, phytoremediation, and bioremediation for effective mitigation of fly ash contamination, emphasizing thorough investigations.

Keywords

Bioaccumulation crop yield. fly ash heavy metals

References

Ahmad, G., Khan, A. A. and Mohamed, H. I. (2021). Impact of the low and high concentrations of fly ash amended soil on growth, physiological response, and yield of pumpkin (Cucurbita moschata Duch. Ex Poiret L.). Environ. Sci. Pollut. Res. Int.28: 17068-083.  doi:10.1007/ s11356-020-12029-8.
Barman, S. C., Sahu, R. K., Bhargava, S. K. and Chaterjee, C. (2000). Distribution of heavy metals in wheat, mustard, and weed grown in field irrigated with industrial effluents. Bull. Environ. Contam. Toxicol.64: 489-96. doi:10.1007/s001280000030.
Buha Marković, J. Z., Marinković, A. D., Savić, J. Z., Mladenović, M. R., Erić, M. D., Marković, Z. J. and Ristić, M. Đ. (2023). Risk evaluation of pollutants emission from coal and coal waste combustion plants and environmental impact of fly ash landfilling. Toxics11: doi:10.3390/toxics11040396.
De Vos, B., Lettens, S., Muys, B. and Deckers, J. A. (2007). Walkley–Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use Manag.23: 221-29.  doi:10.1111/j.1475-2743.2007.00084.x.
Dwibedi, S. K., Sahu, S. K., Pandey, V. C., Mahalik, J. K. and Behera, M. (2023). Effect of fly ash and vermicompost amendment on rhizospheric earthworm and nematode count and change in soil carbon pool of rice nursery. Environ. Sci. Pollut Res. Int.30: 124520-4529.  doi:10.1007/s11356-022-20157-6.
Hernández, I., Taulé, C., Pérez-Pérez, R., Battistoni, F., Fabiano, E., Villanueva-Guerrero, A. and Herrera, H. (2023). Endophytic seed-associated bacteria as plant growth promoters of Cuban rice (Oryza sativa L.). Microorganisms11: 2317.  doi:10.3390/microorganisms 11092317.
Islam, M. D., Hasan, M. M., Rahaman, A., Haque, P., Islam, M. S. and Rahman, M. M. (2020). Translocation and bioaccumulation of trace metals from industrial effluent to locally grown vegetables and assessment of human health risk in Bangladesh. SN Appl. Sci.2: 1-11. doi:10.1007/s42452-020-3123-3.
Jambhulkar, H. (2023). Beneficial & adverse impacts of fly ash amelioration on soil health: A Review. J. Indian Assoc. Environ. Manag.43: 1-8.
Kumar, K. and Kumar, A. (2023). A case study of fly ash utilization for enhancement of growth and yield of cowpea (Vigna unguiculata L.) to sustainable agriculture. Biomass Convers.  Bior. 13: 7571-84. doi:10.1007/s13399-021-01459-0.
Kumar, V. and Chopra, A. K. (2014). Accumulation and translocation of metals in soil and different parts of French bean (Phaseolus vulgaris L.) amended with sewage sludge. Bull. Environ. Contam. Toxicol. 92: 103-08. doi:10.1007/s00128-013-1142-0.
Pandey, V. C. (2020). Phyto management of fly ash. 1stEdn. Elsevier. pp. 352.
Parewa, H. P., Joshi, N., Meena, V. S., Joshi, S., Choudhary, A., Ram, M. and Jain, L. K. (2021). Role of biofertilizers and biopesticides in organic farming. Advances in Organic Farming. pp. 133-159. doi:10.1016/B978-0-12-822358-1.00009-2.
Pathak, B., Rawat, K. and Fulekar, M. H. (2019). Heavy metal accumulation by plant species at fly-ash dumpsites: Thermal power plant, Gandhinagar, Gujarat. Int. J. Plant Environ. 5: 111-16. doi:10.18811/ijpen.v5i02.7.
Paul, B., Samanta, A.and Bhattacharyya, N.(2024).Evaluating the effect of fly ash on soil properties and germination of rice (Oryza sativa): A study on the utilization of thermal power plant residue. Crop Res. 59: 14-20.
Shukla, B. K., Gupta, A., Gowda, S. and Srivastav, Y. (2023). Constructing a greener future: A comprehensive review on the sustainable use of fly ash in the construction industry and beyond. Mater. Today Proc. 93: 257-64. doi:10.1016/j.matpr.2023.07.179.
Singh, P. K., Shikha, D. and Saw, S. (2023). Evaluation of potential toxic heavy metal contamination in soil, fly ash, vegetables and grain crops along with associated ecological and health risk assessment of nearby inhabitants of a thermal power station in Jharkhand (India). Environ. Sci. Pollut. Res. Int. 30: 7752-69. doi:10.1007/s11356-022-22638-0.
Singh, R., Singh, D. P., Kumar, N., Bhargava, S. K. and Barman, S. C. (2010). Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. J. Environ. Biol. 31: 421-30.
Verma, C., Madan, S. and Hussain, A. (2016). Heavy metal contamination of groundwater due to fly ash disposal of coal-fired thermal power plant, Parichha, Jhansi, India. Cogent Eng. 3: doi:10.1080/23311916.2016.1179243.
Zierold, K. M. and Odoh, C. (2020). A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. Rev. Environ. Health35: 401-18. doi:10.1515/ reveh-2019-0039.
 
 
 

 
 

Global Footprints