Loading...

Screening and characterization of plant growth promoting rhizobacteria and their effect on growth and yield of barley (Hordeum vulgare L.) 


DOI: 10.31830/2454-1761.2023.CR-934    | Article Id: CR-934 | Page : 207-215
Citation :- Screening and characterization of plant growth promoting rhizobacteria and their effect on growth and yield of barley (Hordeum vulgare L.). Crop Res. 58: 207-215
KAVITA DEVI, DEEKSHA SHARMA, RAGHUVIR SINGH AND RAM PRAKASH PANDEY ram.e11496@cumail.in
Address : University Institute of Biotechnology- Biosciences, Chandigarh University, Mohali, Punjab- 140413, India
Submitted Date : 4-10-2023
Accepted Date : 15-10-2023

Abstract

A multitude of roles are played by microbes in food and agriculture that include nutrient cycling and management, organic matter decomposition and fermentation. Plant growth promoting rhizobacteria (PGPR), representing microbial groups and with the ability of colonizing plant roots, influence plant growth through various indirect and direct modes in order to promote its growth and/or protect it from diseases or damage due to insect attack. This research was conducted during August 2022 to April 2023 at Chandigarh University, Punjab, wherein 15 bacterial isolates were isolated from rhizospheric soils of different crop plants. Isolates were identified based on biochemical characteristics and their plant growth promotional efficiencies were tested in-vitro. A total of ten isolates were found positive for four or more than 4 plant growth promoting traits. These isolates were further identified at molecular level using amplification and sequencing of 16S rDNA sequences. Sequences were submitted to the NCBI GenBank portal and accessions numbers were obtained. Potential microbial strains were inoculated with Barley seeds and a significant increase in plant height, dry weight and wet weight as well as number of seeds was recorded in inoculated plants as compared to control plants. However, maximum plant growth and yield was recorded in the plants inoculated with isolates 21B (Klebsiella quasivariicola) and 28B (Arthrobacter sp.). These isolates may become very crucial alternatives of chemical fertilizers for sustainable agriculture.

Keywords

Barley biofertilizers PGPR plant growth promotion rhizospheric soil 


References

AL-Baer, A. S. and Hussein, A. A. (2017). Isolation and identification of Escherichia coli producing cytosine deaminase from Iraqi parents. Int. J. Adv. Res. Biol. Sci. 4:1-6. doi.org/10.22192/ijarbs.2017.04.11.001.
Alemayehu, G. F., Forsido, S. F., Tola, Y. B. and Amare, E. (2023). Nutritional and phytochemical composition and associated health benefits of oat (Avena sativa) grains and oat-based fermented food products. Sci. World J. 2023: doi.org/10.1155/2023/2730175.
Amri, M., Rjeibi, M. R., Gatrouni, M., Mateus, D. M., Asses, N., Pinho, H. J. and Abbes, C. (2023). Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorg. 11: doi.org/10.3390/microorganisms11030783.
Bakker, A. W. and Schippers, B. O. B. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulation. Soil Biol. Biochem. 19: 451-57.
Bano, N. and Musarrat, J. (2003). Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr. Microbiol. 46: 0324-28.
Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A. and Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicro. J. 36: 904-16.
Du, J., Duan, S., Miao, J., Zhai, M. and Cao, Y. (2021). Purification and characterization of chitinase from Paenibacillus sp. Biotech. Appl. Biochem. 68: 30-40.
Fitzgerald, S., Kary, S. C., Alshabib, E. Y., MacKenzie, K. D., Stoebel, D. M., Chao, T. C. and Cameron, A. D. (2020). Redefining the H-NS protein family: a diversity of specialized core and accessory forms exhibit hierarchical transcriptional network integration. Nuc. Acids Res. 48: 10184-98.
Geng, L., Li, M., Zhang, G. and Ye, L. (2022). Barley: a potential cereal for producing healthy and functional foods. Food Qual. Safe. 6: doi.org/10.1093/fqsafe/fyac012.
Ghazy, N. and El-Nahrawy, S. (2021). Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Arch. Microbiol. 203:1195-209.
Hakala, K., Jauhiainen, L., Rajala, A. A., Jalli, M., Kujala, M. and Laine, A. (2020). Different responses to weather events may change the cultivation balance of spring barley and oats in the future. Field Crops Res. 259: doi:10.1016/j.fcr.2020.107956.
Jida, M. and Assefa, F. (2012). Phenotypic diversity and plant growth promoting characteristics of Mesorhizobium species isolated from chickpea (Cicer arietinum L.) growing areas of Ethiopia. Afr. J. Biotech. 11: 7483-93.
Jonas, M. C., Viennechie, G. E., Cecile, M. K. I. M., Samuel, O. I., Averti, I. S. and Etienne, N. (2022). Characterization of isolated bacteria from soils in the Likouala Peat Bog Area (Republic of Congo). Ame. J. Microbiol. Res. 10: 59-70.
Kifle, M. H. and Laing, M. D. (2016). Isolation and screening of bacteria for their diazotrophic potential and their influence on growth promotion of maize seedlings in greenhouses. Front. Plant. Sci. 6: doi.org/10.3389/fpls.2015.01225.
Liu, L., Yan, R., Zhu, L., Yang, Y., Gao, Z., Yang, W. and Liu, J. (2023). Balanced phosphorus fertilization enhances soil bacterial network complexity to maintain multifunctionality and plant production in dryland agricultural systems. Agric., Eco. Env. 356: doi.org/10.1016/j.agee.2023.108647.
Lurthy, T., Cantat, C., Jeudy, C., Declerck, P., Gallardo, K., Barraud, C., et al. (2020). Impact of bacterial siderophores on iron status and ionomer in pea. Front. Plant Sci. 11: doi.org/10.3389/fpls.2020.00730.
Nayak, S. K., Dash, B., Nayak, S., Mohanty, S. and Mishra, B. B. (2020). Chitinase producing soil bacteria: prospects and applications. Front. Soil Env. Micro. 3: 289-98.
Pandey, R. P., Singh, P. K., Pundir, R. K., Srivastava, A. K., Gupta, V. K., Ramteke, P. W. and O’Donovan, A. (2023). Stress-tolerant plant growth-promoting Mesorhizobium ciceri isolates from mid-gangetic plains. Appl. Biochem. Microbio. 59: 349-60. doi.org/10.1134/ S0003683823030146.
Pandey, R. P., Srivastava, A. K., Gupta, V. K., O’Donovan, A. and Ramteke, P. W. (2018c). Enhanced yield of diverse varieties of chickpea (Cicer arietinum L.) by different isolates of Mesorhizobium ciceriEnv. Sust. 1: 425-35. doi.org/10.1007/s42398-018-00039-9.
Pandey, R. P., Srivastava, A. K., Srivastava, A. K. and Ramteke, P. W. (2018a). Antagonistic activity of Mesorhizobium ciceri against phytopathogenic fungi Fusarium oxysporum f. sp. ciceris. Trends Biosci. 11: 637-39.
Pandey, R. P., Srivastava, A. K., Srivastava, A. K. and Ramteke, P. W. (2018b). Antibiotic Resistance in Mesorhizobium ciceri from Eastern Uttar Pradesh, India. Climate Change Env. Sus. 6: 114-18. doi.org/10.5958/2320-642X.2018.00014.5.
Pantoja-Guerra, M., Burkett-Cadena, M., Cadena, J., Dunlap, C. A. and Ramírez, C. A. (2023). Lysinibacillus spp.: an IAA-producing endospore forming-bacteria that promotes plant growth. Antonie van Leeu. 3: 1-16.
Rai, R., Dash, P. K., Mohapatra, T. and Singh, A. (2012). Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India. Ind. J. Exp. Biol.  50: 340-50.
Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S. et al. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. J. Cleaner Prod. 283: doi.org/10.1016/j.jclepro.2020.124657.
Sabuz, A. A., Rana, M. R., Ahmed, T., Molla, M. M., Islam, N., Khan, H. H. and Shen, Q. (2023). Health-promoting potential of millet: A review. Separations 10: doi.org/10.3390/separations10020080.
Schwyn, B. and Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analyt. Biochem. 160: 47-56.
Sehrawat, A., Sindhu, S. S. and Glick, B. R. (2022). Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere 32: 15-38.
Sharma, D., Devi, K. and Pandey, R. P. (2023). Isolation of heavy metal tolerating bacteria and its effect on two different wheat varieties. Innovations 73: 1117-30. 
Shi, A., Hu, Y., Zhang, X., Zhou, D., Xu, J., Rensing, C. and Yang, W. (2023). Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community. Env. Pollution 327: doi: 10.1016/j.envpol.2023.121559.
Shukla, A. K., Behera, S. K., Chaudhari, S. K. and Singh, G. (2022). Fertilizer use in Indian agriculture and its impact on human health and environment. Indian J. Fertil. 18: 218-37.
Simpson, L. M. and Oliver, J. D. (1983). Siderophore production by Vibrio vulnificusInfec. Immu. 41: 644-49.
Sztupecki, W., Rhazi, L., Depeint, F. and Aussenac, T. (2023). Functional and nutritional characteristics of natural or modified wheat bran non-starch polysaccharides: A literature Review. Foods 12: doi.org/10.3390/foods12142693.
Tan, B. L., Norhaizan, M. E. and Chan, L. C. (2023). Rice Bran: From waste to nutritious food ingredients. Nutrients 15: doi.org/10.3390/nu15112503.
Tarnawa, Á., Kende, Z., Sghaier, A. H., Kovács, G. P., Gyuricza, C. and Khaeim, H. (2023). Effect of abiotic stresses from drought, temperature, and density on germination and seedling growth of barley (Hordeum vulgare L.). Plants 12: doi.org/10.3390/plants12091792.
Zhang, S., Deng, Z., Borham, A., Ma, Y., Wang, Y., Hu, J. and Bohu, T. (2023). Significance of soil siderophore-producing bacteria in evaluation and elevation of crop yield. Horticulturae 9: doi:10.3390/horticulturae9030370.

Global Footprints