Loading...

In vitro efficacy of fenazaquin 18.3% w/w (200 SC) against Polyphagotarsonemus latus Banks (Acari: Tarsonemidae) in chilli ​


DOI: 10.31830/2454-1761.2023.CR-921    | Article Id: CR-921 | Page : 260-263
Citation :- In vitro efficacy of fenazaquin 18.3% w/w (200 SC) against Polyphagotarsonemus latus Banks (Acari: Tarsonemidae) in chilli​. Crop Res. 58: 260-263
PRIYADHARSHINI V, AYYASAMY REGUPATHY AND KATHIRVELU C priyadharshinivelayutham1996@gmail.com
Address : Toxicology Laboratory, Department of Entomology, Faculty of Agriculture, Annamalai University, Chidambaram – 608 002, Tamil Nadu, India
Submitted Date : 11-07-2023
Accepted Date : 15-10-2023

Abstract

Yellow mite, Polyphagotarsonemus latus is one of the important pests in chilli ecosystem and causes considerable yield loss. Synthetic acaricides play a  major role in the management of yellow mites. A novel pesticide, fenazaquin 18.3% w/w (200 SC) was evaluated under laboratory conditions against two standard checks viz., fenazaquin 10 EC and spiromesifen 22.9% SC that are frequently used in vegetable ecosystems with water as control, in an effort to find more effective alternatives to the existing chemicals. Various doses of fenazaquin 18.3% w/w (200 SC) tested exhibited significant mortality. After 6 days of treatment, 100% mortality was recorded in fenazaquin 18.3% w/w (200 SC) @ 1.25 and 1.60 ml/l followed by 95% in fenazaquin 10 EC @ 2.5 ml/l, 92.5 % in fenazaquin 18.3% w/w (200 SC) @ 1 ml/l and 87.5% in spiromesifen 22.9% SC @ 0.80 ml/l.

Keywords

Chilli fenazaquin 18.3% w/w (200 SC) mortality Polyphagotarsonemus latus 


References

Abbott, W. S. (1925). A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 18: 265-67.
Ahmed, K., Rao. P. P. C. and Rao, N. P. H. (2000). Evaluation of new insecticides against yellow mite. Pestology 34: 54-57.
Anonymous (2020). Major uses of pesticides (Registered under the Insecticides Act, 1968). Central Insecticide Board & Registration Committee, Faridabad, Directorate of Plant Protection, Quarantine & Storage, Department of Agriculture, Cooperation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Government of India. Retrieved 11 June 2023. http://ppqs.gov.in/divisions/cib-rc/major-uses-of-pesticides.
Balikai, R. A. (2020). Bio-efficacy of Spiromesifen 240 SC (Oberon 240 SC) against whitefly and mites in tomato. Farm. Manage. 5: 75-84.
Childers, C. C. (1994). Biological control of phytophagous mites in Florida citrus utilizing predatory arthropods. In: Pest Management in the Subtropics: Biological Control - A Florida Perspective. (Eds. Rosen, D., Bennett, F. D. and Capinera, J. L.), Intercept, Andover, UK. pp. 255-88.
Cross, J. V. and Bassett, P. (1982). Damage to tomato and aubergine by broad mite, Polyphagotarsonemus latus (Banks). Plant Pathol31: 391-93.
Duncan, D. B. (1951). A significance test for differences between ranked treatments in an analysis of variance. Virginia J. Sci. 2: 171-89.
Gerson, U. (1992).  Biology and control of the broad mite, Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Exp. Appl. Acarol. 13: 163-78.
Ghosh, S. K. (2023). Efficacy of plant-based formulation against yellow mite of chilli (Polyphagotarsonemus latus Banks). Int. J. Trop. Insect Sci. 43: 645-54.
Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. An International Rice Research Institute Book, A Wiley-Interscience Publication, John Wiley & Sons, New York, pp. 680.
Hoskins, W. M. and Craig, R. (1962). Uses of bioassay in entomology. Ann. Rev. Entomol. 7: 437-64.
Jeppson, L. R., Keifer, H. H. and Baker, E. W. (1975). Mite Injures to Economic Plants. University of California Press, Berkeley, CA. Pp. 614.
Kabir, K. H., Chapman, R. B. and Penman, D. R. (1993). Miticide bioassays with spider mites (Acari: Tetranychidae): effect of test method, exposure period and mortality criterion on the precision of response estimates. Exp. Appl. Acarol. 17: 695-708.
Luypaert, G., Witters, J., Van Huylenbroeck, J., Maes, M., De Riek, J. and De Clercq, P. (2014).  Temperature-dependent development of the broad mite Polyphagotarsonemus latus (Acari: Tarsonemidae) on Rhododendron simsii. Exp. Appl. Acarol. 6: 389-400.
Makundi, R. H. and Kashenge, S. (2002). Comparative efficacy of neem, Azadirachta indica, extract formulations and the synthetic acaricide, Amitraz (Mitac), against the two spotted spider mites, Tetranychus urticae (Acari: Tetranychidae), on tomatoes, Lycopersicum esculentum. J. Plant Dis. Protec. 109: 57–63.
Mirzaei, M., Nematollahi, M. R. and Golmohammadi, G. (2021). Evaluating currently used pesticides in apple orchards on field populations of Tetranychus urticae Koch (Acari: Tetranychidae). Arch. Phytopathol. Plant Protec54: 691-701.
Rai, A. B., Halder, J. and Kodandaram, M. H. (2014). Emerging insect pest problems in vegetable crops and their management in India: An appraisal. Pest Manage. Hort Ecosyst. 20: 113-22.
Sathua, S. K., Reddy, M. S., Singh, A. P. and Singh, R. N. (2018). In vitro toxicity assessment of synthetic acaricides against yellow mite, Polyphagotarsonemus latus (Banks), and Predatory Mite, Amblyseius ovalis (Evans), on chilli plants. Appl. Biol. Res. 20: 324-28.
Srinivasan, M. R., Nataranjan, N. and Palaniswamy, S. (2003). Evaluation of buprofezin 25 SC and fenpyroximate 5 SC against chilli mite, Polyphagotarsonemus latus (Banks). Int. J. Plant Protec. 31: 116-17.
Veena, S. K., Giraddi, R. S., Bhemmanna, M. and Kandpal, K. (2017). Effectiveness of plant oils for increasing the efficacy of insecticides and acaricides against chilli mite. J. Entomol. Zool. Studies5: 9-11.
Venzon, M., Rosado, M. C., Molina-Rugama, A. J, Duarte, V. S, Dias, R. and Pallini, A. (2008). Acaricidal efficacy of neem against Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Crop Protec. 27: 869-72.
Walker, W. F., Boswell, A. L. and Smith, F. F. (1973). Resistance of spider mites to acaricides: Comparison of slide dip and leaf dip methods. J. Econ. Entomol. 66: 549–50.
 
 

Global Footprints