Loading...

Impact of extrafloral nectar of Kenaf, Hibiscus cannabinus L. (Malvaceae) on life history parameters and parasitization of Aenasius advena Compere (Hymenoptera: Encyrtidae) 


DOI: 10.31830/2454-1761.2023.CR-920    | Article Id: CR-920 | Page : 264-270
Citation :- Impact of extrafloral nectar of Kenaf, Hibiscus cannabinus L. (Malvaceae) on life history parameters and parasitization of Aenasius advena Compere (Hymenoptera: Encyrtidae). Crop Res. 58: 264-270
R. PUNGAVI AND T. NALINI r.pungavientomology@gmail.com
Address : Department of Entomology, Faculty of Agriculture, Annamalai University, Annamalainagar - 608002, Tamil Nadu, India
Submitted Date : 16-06-2023
Accepted Date : 15-10-2023

Abstract

Studies were conducted to observe the effect of extrafloral nectar (EFN) on the life history parameters of Aenasius advena Compere in the Department of Entomology, Faculty of Agriculture, Annamalai University, Annamalainagar, Tamil Nadu, India.  Longevity of A. advena was found highest in females and males at 26.80 and 15.70 days when fed with EFN, respectively which was followed by 100% honey and glucose. Among the treatments EFN and 100% honey the number of female and male progenies produced per female ranged from (highest to lowest) 46.40, 22.00 to 6.00, 2.00 and 23.58, 26.00 to 1.00, 0.20, respectively during four weeks. The provision of EFN and 100% honey to mated female produced 40.45 and 24.44 eggs during four weeks, respectively. The sex ratio (female) of A. advena was recorded highest as 77.78 in EFN in 1stweek and 83.33 in 100% honey in 4thweek. Parasitization of A. advena on Ferrisia virgata was found highest for EFN (65.14 %) and 100% honey (47.22 %) during the second week. Thus, providing EFN can boost parasitoid survival, fecundity, sex ratio (female) and parasitism rates.

Keywords

Aenasius advena extrafloral nectar life history parameters parasitization 


References

Brown, M. W., Mathews, C. R. and Krawczyk, G. (2010). Extrafloral nectar in an apple ecosystem to enhance biological control. J. Econ. Entomol. 103: 1657-64.
Culik, M. P. and Gullan, P. J. (2016). A new pest of tomato and other records of mealybugs (Hemiptera: Pseudococcidae) from Espirito Santo, Brazil. Zootaxa 964: 1–8.
Desouhant, E., Driessen, G., Amat, I. and Bernstein, C. (2005). Host and food searching in a parasitic wasp Venturia canescens: a trade-off between current and future reproduction? Anim. Behaviour 70: 145-52.
Escalante-Perez, M. and Heil, M. (2012). Nectar secretion: Its ecological context and physiological regulation. In: Secretions and Exudates in Biological Systems, (Eds. Vivanco, J. M. and Balusa, F.), Berlin:Springer. pp.187-219.
Geneau, C. E., Wackers, F. L., Luka, H., Daniel, C. and Balmer, O. (2012). Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic Appl. Ecol. 13: 85-93.
Gonzalezchang, M., Tiwari, S., Sharma, S. and Wratten, S. D. (2019). Habitat management for pest management: limitations and prospects. Ann. Entomol. Soc. America 112: 302-17.
Gurr, G. M., Scarratt, S. L., Wratten, S. D., Berndt, L. and Irvin, N. (2004). Ecological engineering, habitat manipulation and pest management. In: Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods, CSIRO Publishing. pp. 1-12.
Heil, M., Fiala, B., Baumann, B. and Linsenmair, K. E. (2000). Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanariusFunctional Ecol. 14: 749-57.
Heimpel, G. E. and Jervis, M. A. (2005). Does floral nectar improve biological control by parasitoids. Plant-provided food for Carnivorous insects: A Protective Mutualism and its Applications, Cambridge University Press, Cambridge, UK. pp. 267-304.
Irvin, N. A. and Hoddle, M. S. (2015). The effect of buckwheat flowers and cahaba vetch extrafloral nectaries on fitness of the vine mealybug parasitoid Anagyrus pseudococci (Hymenotpera: Encyrtidae). Florida Entomol. 98: 237-42.
Irvin, N. A. and Hoddle, M. S. (2021). The effects of floral nectar, extrafloral nectar and hemipteran honeydew on the fitness of Tamarixia radiata (Hymenoptera: Eulophidae), a parasitoid of Diaphorina citriBiol. Control 163: doi: 10.1016/j.biocontrol.2021.104753.
Irvin, N. A., Pinckard, T. R., Perring, T. M. and Hoddle, M. S. (2014). Evaluating the potential of buckwheat and cahaba vetch as nectar-producing cover crops for enhancing biological control of Homalodisca vitripennis in California vineyards. Biol. Control 76: 10-18.
Jamont, M., Crepelliere, S. and Jaloux, B. (2013). Effect of extrafloral nectar provisioning on the performance of the adult parasitoid Diaeretiella rapaeBiol. Control 65: 271-77.
Jervis, M. A., Ellers, J. and Harvey, J. A. (2008). Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Ann. Rev. Entomol. 53: 361-85.
Jervis, M. A., Kidd, N. A. C., Fitton, M. G., Huddleston, T. and Dawah, H. A. (1993). Flower-visiting by hymenopteran parasitoids. J. Nat. Hist. 27: 67-105.
Koptur, S. (1992) Extrafloral nectary-mediated interactions between insects and plants. In: Insect-Plant Interactions. CRC Press, Boca Raton. pp. 81–129.
Koptur, S. U. (2005) Nectar as fuel for plant protectors. Plant-provided food for Carnivorous insects: A protective Mutualism and its Applications. Cambridge University Press, Cambridge, UK. Pp. 75-108.
Kost, C. and Heil, M. (2005). Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus Fabaceae). Basic Appl. Ecol. 6: 237-48.
Lundgren, J. G. (2009) Extrafloral nectar. In: Relationships of Natural Enemies and Non-Prey Foods. (Ed. Lundgren, J. G.) Springer Science and Business Media B. V, Berlin. pp. 61-72.
Mani, M. (1992). Contact toxicity of different pesticides to the encyrtid parasitoids, Aenasius advena and Blepyrus insularis of the striped mealybug, Ferrisia virgataInt. J. Pest Manage. 38: 386-90.
Nalini, T. (2015). Effect of food, host densities and mating status on parasitization of Aenasius bambawalei Hayat and Aenasius advena Compere (Hymenoptera: Encyrtidae). Plant Arch. 15: 967-72.
Nalini, T. and Sneka, S. (2021). Impact of ants on natural enemy population in mesta and castor. Sixth National Conference on Biological Control: Innovative Approaches for Green India. 3 - 5 March.Hybrid mode. NBAIR, Bengaluru. pp. 56.
Nalini, T. and Manickavasagam, S. (2011). Records of Encyrtidae (Hymenoptera: Chalcidoidea) parasitoids on mealybugs (Hemiptera: Pseudococcidae) from Tamil Nadu, India. Check List 7: 510-15.
Nicolson, S. W. and Thornburg, R. W. (2007). Nectar chemistry. In: Nectaries and Nectar, Dordrecht: Springer, Netherlands. pp. 215-64.
Rose, U. S. R., Lewis, J. and Tumlinson, J. H. (2006). Extrafloral nectar from cotton (Gossypium hirsutum) as a food source for parasitic wasps. Functional Ecol. 20: 67-74.
Sirot, E. and Bernstein, C. (1997). Food searching and super parasitism in solitary parasitoids. Acta Oecologica 18: 63-72.
Tscharntke, T., Bommarco, R., Clough, Y., Crist, T. O., Kleijn, D., Rand, T. A., Tylianakis, J.M., van Nouhuys, S. and Vidal, S. (2008). Reprint of “Conservation biological control and enemy diversity on a landscape scale” [Biol. Control 43 (2007) 294–309]. Biol. Control 45: 238-53.
Vattala, H. D., Wratten, S. D., Phillips, C. B. and Wackers, F. L. (2006). The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biol. Control 39: 179-85.
Wackers, F. L. (2000). Do oligosaccharides reduce the suitability of honeydew for predators and parasitoids? A further facet to the function of insect-synthesized honeydew sugars. Oikos 90: 197-201.
Wackers, F. L., van Rijn, P. C. J. and Bruin, J. (Eds.). (2005). Plant-provided food for Carnivorous insects: A Protective Mutualism and its pAplications. Cambridge University Press, Cambridge, UK. pp. 17–75.
Wackers, F. L. (2001) A comparison of nectar-and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. J. Insect Physiol. 47: 1077-84.
Xiu, C. L., Pan, H. S., Ali, A. and Lu, Y. H. (2017). Extrafloral nectar of Hibiscus cannabinus promotes adult populations of Harmonia axyridisBiocontrol Sci. Technol. 27: 1009-13.

Global Footprints