Loading...

Phytoremediation of heavy metals (Cr and Pb) from sewage irrigated soil of tropical sub-humid region of Indo-Gangetic plain using Amaranthus viridis


DOI: 10.31830/2454-1761.2023.CR-903    | Article Id: CR-903 | Page : 170-177
Citation :- Phytoremediation of heavy metals (Cr and Pb) from sewage irrigated soil of tropical sub-humid region of Indo-Gangetic plain using Amaranthus viridis. Crop Res. 58: 170-177
HIMANCHAL VISHWAKARMA, DINESH MANI, DEVI PRASAD SHUKLA AND VIPIN SAHU himanchal6390@gmail.com
Address : Sheila Dhar Institute of Soil Science Department of Chemistry, University of Allahabad, Prayagraj-211 002, (U. P.) India
Submitted Date : 31-01-2023
Accepted Date : 23-03-2023

Abstract

This study was conducted to find out the potential of Amaranthus viridis for the phytoremediation of heavy metals (Cr and Pb) grown on sewage irrigated site. The status of heavy metals in sewage irrigated soil was observed as Pb 4.91±0.96 mg/kg and Cr 3.48±0.51 mg/kg maximum in Buxibandh site and minimum concentration 2.11 0.19 mg/kg and Cr 1.82±0.19 mg/kg in Phaphamau sites. A. viridis grown on a sewage irrigated soils recorded maximum accumulation of Cr ranging from 4.23 0.28-4.11 0.15 mg/kg and minimum concentration 2.52±0.05–2.34±0.05 mg/kg in Buxibandh and Phaphamau respectively and maximum accumulation of Pb 4.4±10.52–4.27±0.39 mg/kg and minimum accumulation 2.89±0.04–2.43±0.06 mg/kg in root and shoot, respectively. The result shows the maximum potential of accumulation Pb 4.41±0.52 mg/kg followed by Cr 4.23±0.28 mg/kg in Buxibandh sewage irrigated site. The maximum dry biomass yield of A. viridis plants was recorded in Phaphamau sewage irrigated site of Cr and Pb sewage irrigated soils ranging 3.8±0.5–4.9±0.7 g/plant and 36±5–39±4.4 g/plant, respectively, while the minimum dry biomass yield as 2.5±0.4–2.8±0.4 g/plant and 26±1.2–28±3.9 g/plant in shoot and root, respectively, at Buxibandh sewage irrigated site. The accumulation of heavy metals hampered plant development and nutrients bioavailability. Furthermore, their bioconcentration factor (BCF) and translocation factor (TF) >1.0 indicated the hyperaccumulation efficiency of plants ranges of Cr and Pb was recorded 1.33±0.04–1.06±0.05 mg/kg and 1.03±0.02–1.12±0.1 mg/kg, respectively. The result proved that the A. viridis had a great potential to remove heavy metals from sewage irrigated soils.

Keywords

Accumulation Amaranthus viridis heavy metal phytoremediation sewage irrigated soils 


References

Ali, H. khan., E. and Sajad, M. A. (2013). Phytoremediation of heavy metals–Concepts and applications. Chemosphere 91: 869-81.
Cui, S., Zhou, Q. and Chao, L. (2007). Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environ. Geol. 51:1043-48.
Gadd, G. M. (2007). Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111: 3-49.
Gajewska, S. E. and Gajewska., M. S. (2007). Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Bio Metals 20: 27-36.
Gomes, S. I., Goncalves, M. F., Bicho, R. C., Roca, C. P., Soares, A. M. and Scott Fords Mand, J. J. (2018). High through put gene expression in soil invertebrate embryos-mechanisms of Cr toxicity in Enchytraeus crypticus. Chemosphere 212: 87-94.
Jonas, K. M., Zieli, Ska-Tomaszewska, J., Rybaczek, D., Maszewski, J., Posmyk, M. M., Amarowicz, R. and Kosinska A. (2010). The impact of copper ions on growth, lipid peroxidation and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. J. Plant Physiol. 167: 270-76.
Joseph, L., Jun, B. M., Flora, J. R., Park, C. M. and Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 229: 142-59. https://doi.org/10.1016/j. chemosphere.2019.04.198.
Kumar, C. and Mani, D. (2010). Enrichment and management of heavy metals in sewage-irrigated soil. Lap LAMBERT Academic Publishing. Dudweiler, Germany.
Lanntech, M., S. Assolari, P. Sacco, G. (2004). Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multi-contaminated soil, Environ. Pollut. 132 (1) (2004) 21-27.
Liu, S., Yang, B., Liang, Y., Xiao, Y. and Fang, J. (2020). Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ. Sci. Pollut. Res. 27: 16069-85.
Ogunkunle, C. O., Odulaja, D. A., Akande, F. O., Varun, M., Vishwakarma, V. and Fatoba, P. O. (2020). Cadmium toxicity in cowpea plant: Effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J. Biotechnol. 310: 54-61. https://doi.org/10.1016/j.jbiotec.2020. 01.009.
Peng, J., Chen, Y., Xia, Q., Rong, G. and Zhang, J. (2020). Ecological risk and early warning of soil compound pollutants (HMs, PAHs, PCBs and OCPs) in an industrial city, Changchun China. Environ. Pollut. 1: doi.org/10.1016/j.envpol.2020. 116038.
Rehman, A. U., Nazir, S., Irshad, R., Tahir, K., U. R., Rehman, K., Islam, R. U. and Wahab, Z. (2020). Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J. Mole. Liquids 321:   doi.org/10.1016/j.molliq. 2020.114455.
Rehman, S. U., Mohamed, R. and Ayoup, H. (2018). Cybernetic controls and rewards and compensation controls influence on organizational performance. Mediating role of organizational capabilities in Pakistan. Int. J. Academic Manage. Sci. Res. (IJAMSR) 2: 1-10.
Sandmann, C. A., Walker, B. B., and Lawton, C. A. (1980). An analogy of MSH/ACTH 4-9 enhances interpersonal and environmental awareness in mentally retarded adults. Peptides 1: 109-114.
Shokr, M. S., El-Baroudy, A. A., Fullen, M. A., El-Beshbeshy, T. R., Ramadan, A. R., Abd El Halim, A., Guerra, J. T. and Jorge, M. C. (2016). Spatial distribution of heavy metals in the middle Nile delta of Egypt. Int. Soil and Water Conservation Res. 4: 293-303. https://doi.org/10.1016/j.iswcr.2016.10.003.
Shukla, D. P., Mani, D., Pathak, J., Vishwakarma, H. and Sahu, V. (2022). Phytoremediation of heavy metals (Cd & Pb) in sewage irrigated soils using Chenopodium album. Crop Res. 57: 346-54. doi: 10.31830/2454-1761. 2022.CR-825.321.
Singh, R., Gautam, N., Mishra, A. and Gupta, R. (2011). Heavy metals and living systems: An overview. Indian J. Pharmacol. 43: 246-53.
Sinha, S., Gupta, A. K., Bhatt, K., Pandey, K., Rai, U. N. and Singh, K. P. (2006). Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: Relation with physico-chemical properties of the soil. Environ. Monit. Assess. 115. doi: 10.1007/s10661-006-5036-z.
Sun, Z., Xie, X., Wang, P., Hu, Y. and Cheng, H. (2018). Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sci Total Environ. 639: 217-27.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. and Sutton, D. J. (2012). Heavy metal toxicity and the environment. EXS 101: 1-30.
Tewari, R. K., Kumar, P., Sharma, P. N. and Bisht, S. S. (2002). Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci. 162: 381-88.
Toth, G., Hermann, T., Szatmari G. and Pasztor, L. (2016). Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Sci. Total Environ. 565: 1054-62.
Usman, M. A., Al-Ghouti, M. H. and Abu-Aieyeh (2019). The assessment of cadmium, chromium, copper and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse, Sci. Rep. 9: 5658. doi: 10.1038/s4i598-019-42029-9.
Yoon, J. H., King, S. J., Lee, C. H. and Oh, T. K. (2006). Donghaeana dokdonensis gen. nov. sp. Nov. isolated from sea water. Int. J. Syst. Evol. Microbiol. 56: 187-91.
Zhou, Z., Xu, Z., Feng, Q., Yao, D., Yu, J., Wang, D., Lv, S., Liu, Y., Zhou, N. and Zhong, M. E. (2018). Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar. J. Cleaner Production 187: 996-1005. https:// doi.org/10.1016/j.jclepro.2018.03.268.

Global Footprints