Loading...

Competitive ability of legume based intercrop for rabi maize (Zea mays L.) in north eastern ghats of Odisha  


Citation :- Competitive ability of legume based intercrop for rabi maize (Zea mays L.) in north eastern ghats of Odisha . Crop Res. 58: 136-143
SOUVIK SAIN, SAGAR MAITRA, TANMOY SHANKAR AND MASINA SAIRAM sairam.masina@cutm.ac.in
Address : Department of Agronomy, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management,, Paralakhemundi-761 211 (Odisha), India

Abstract

Maize is a versatile cereal crop that offers enough scope for adoption of intercropping system. Inclusion of legumes as intercrops with maize offers numerous benefits such as enhancement of productivity from unit area, crop diversification, efficient resource use and agricultural sustainability. Based on the above facts, an experiment was conducted during rabi season of 2021-22 at Post-graduate Research Farm M. S. Swaminathan School of Agriculture, Odisha, India. The experiment was designed in completely randomized block design comprising 12 treatments of maize intercropped in uniform row (UR) and paired rows (PR) with chickpea and field pea. The intercrops were laid out in various row ratios of 1:1, 1:2, 2:2 and 2:3 in comparison with sole crops in uniform and paired rows. The experimental results revealed that the sole maize uniform row (5857 kg/ha) and sole maize paired row (5789 kg/ha) had performed superior to intercropped maize in terms of maize grain yield. However, the higher land equivalent ratio, area time equivalent ratio and monetary advantage were obtained in maize-legume intercropping systems. Maize UR + chickpea (1:2) resulted in the highest net returns and benefit: cost ratio. The study concluded that intercropping maize UR + chickpea (1:2) can be adopted in rabi maize cultivation under south Odisha conditions for more profitability and agricultural sustainability.   

Keywords

Additive series chickpea competition functions field pea intercropping maize

References

Ananthi, T., Amanullah, M. M. and Al-Tawaha, A. R. M. S. (2017). A review on maize-legume intercropping for enhancing the productivity and soil fertility for sustainable agriculture in India. Adv. Environ. Boil. 11: 49-64.
Bhuiyan, M. d. M. R., Monshi, F. I., Begum, M., Tabassum, R., Hoque, M., Islam, S. S. and Hasan, A. K. (2021). Maize-chickpea intercropping under diverse tillage systems enhance the productivity and economic returns. World J. Agric. Sci. 17: 509-20.
Biruk, G., Awoke, T. and Anteneh, T. (2021). Effect of intercropping of maize and cowpea on the yield, land productivity and profitability of components crops in Bena-Tsemay Woreda, Southern Ethiopia. Int. J. Agric. Res. Innov. Technol. 11: 147-50.
De Wit, C. T. (1960). On competition. Verslag Land bouwkundige Onderzoekingen. Wageningen 66: 1-81.
Dhar, P. C., Awal, M. A., Sultan, M. S., Rana, M. M. and Sarker, A. (2013). Interspecific competition, growth and productivity of maize and pea in intercropping mixture. J.  Crop Sci. 2: 136-43.
 Dharshini, P. A., Kumble, A. A., Harishmadevi, M., Jagadeesh, P., Kaviya, R., Mugesh, A., Sharmitha, S., Vimala, V., Theradimani, M. and Jeyajothi, R. (2019). Relative performance of growth and yield of maize based cropping system. Int. J. Chem. Stu. 7: 3163-66.
FAOSTAT (2021). Food and Agriculture Organization of the United Nations. Data: Crops and Livestock Products, available online: https://www.fao.org/faostat/en/#data/QCL (accessed 25th December 2022).
Fujita, K., Ofosu-Budu, K. G. and Ogata, S. (1992). Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 141: 155-75.
Ginwal, D. S., Kumar, R., Ram, H., Dutta, S., Arjun, M. and Hindoriya, P. S. (2019). Fodder productivity and profitability of different maize and legume intercropping systems. Ind. J. Agric. Sci. 89: 1451-55.
Gitari, H. I., Nyawade, S. O., Kamau, S., Karanja, N. N., Gachene, C. K., Raza, M. A. and Schulte-Geldermann, E. (2020). Revisiting intercropping indices with respect to potato-legume intercropping systems. Field Crops Res. 258: 107957.
Gomez, K. A. and Gomez, A. A. (1984) Statistical Procedures for Agricultural Research. 2nd Edition, John Wiley and Sons, New York. Pp. 680.
GoO (2020). 5-decades of Odisha Agriculture Statistics. Directorate of Agriculture and Food Production, Government of Odisha, India. pp. 46.
Hiebsch, C. (1978). Comparing intercrops with monocultures. pp. 187-200. In: Agronomic Economic Research on Soils of the Tropics, 1976-77. Annual Report, North Carolina State University, Raleigh, USA.
Ilyas, A., Hussian, K., Wajid, A., Ahmad, R., Bibi, I., Mehmood, N. and Hilger, T. (2021). Productivity and resource use in a maize-grain legume intercropping system in Punjab, Pakistan. Int. J. Agric. Biol. 25: 985-94.
Jani, A. H. A. A. (2014). Performance of maize-lentil/chickpea intercropping as influenced by row arrangement (Doctoral dissertation). Int. J. Sustain. Crop Prod. 10: 1-7.
Javanmard, A., Machiani, M. A., Lithourgidis, A., Morshedloo, M. R. and Ostadi, A. (2020). Intercropping of maize with legumes: A cleaner strategy for improving the quantity and quality of forage. Cleaner Engg. Tech. 1: doi: org/10.1016/j.clet.2020.100003.
Jena, J., Maitra, S., Hossain, A., Pramanick, B., Gitari, H. I., Praharaj, S. and Jatav, H. S. (2022). Role of legumes in cropping system for soil ecosystem improvement. Ecosystem Services: Types, Management and Benefits. Nova Science Publishers, Inc, (Ed. Jatav, H. S.). pp. 1-21.
Khan, M. A. H., Sultana, N., Akter, N., Zaman, M. S. and Islam, M. R. (2018). Intercropping gardenpea (Pisium sativum) with maize (Zea mays) at farmers’ field. Bangladesh J. Agric. Res. 43: 691-702.
Kumar, S. D. and Maitra, S. (2020). Sorghum-based intercropping system for agricultural sustainability. Ind. J. Nat. Sci. 10: 20306-13.
Maitra, S. (2018). Role of intercropping system in agricultural sustainability. Centurion J. Multidisc. Res. 8: 77-90.
Maitra, S. (2020). Intercropping of small millets for agricultural sustainability in dry lands: A review. Crop Res. 55: 162-71.
Maitra, S. and Gitari, H. I. (2020). Scope for adoption of intercropping system in organic agriculture. Ind. J. Nat. Sci. 11: 28624-31.
Maitra, S. and Ray, D. P. (2019). Enrichment of biodiversity, influence in microbial population dynamics of soil and nutrient utilization in cereal-legume intercropping systems: A review. Int. J. Biores. Sci. 6: 11-19.
Maitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bhadra, P., Palai, J. B., Jana, J., Bhattacharya, U., Duvvada, S. K., Lalichetti, S. and Sairam, M. (2021). Intercropping–A low input agricultural strategy for food and environmental security. Agronomy 11: doi: 10.3390/agronomy11020343.
Maitra, S., Palai, J. B., Manasa, P. and Kumar, D. P.  (2019a). Potential of intercropping system in sustaining crop productivity. Int. J. Agric. Environ. Biotechnol. 12: 39-45. DOI: 10.30954/0974-1712.03.2019.7.
Maitra, S., Praharaj, S., Brestic, M., Sahoo, R. K., Sagar, L., Shankar, T., Palai, J. B.,· Sahoo, U., Sairam, M., Pramanick, B., Nath, S., Venugopalan, V. K., Skalický, M. and Hossain, A. (2023). Rhizobium as biotechnological tools for green solutions: An environment-friendly approach for sustainable crop production in the modern era of climate change. Curr. Microbiol. 80. doi.org/10.1007/s00284-023-03317-w.
Maitra, S., Shankar, T. and Banerjee, P. (2020). Potential and advantages of maize-legume intercropping system. In: Maize-production and Use, Hossain, A. (ed.). Intech Open London, United Kingdom. doi: 10.5772/intechopen.91722.
Maitra, S., Shankar, T., Manasa, P. and Sairam, M. (2019b). Present status and future prospects of maize cultivation in South Odisha. Int. J. Biores. Sci. 6: 27-33.
Manasa, P., Maitra, S. and Barman, S. (2020). Yield attributes, yield, competitive ability and economics of summer maize-legume intercropping system. Int. J. Agric. Environ. Biotechnol. 13: 33-38.
Manasa, P., Maitra, S. and Reddy, M. D. (2018). Effect of summer maize-legume intercropping system on growth, productivity and competitive ability of crops. Int. J. Manag. Technol. Eng8: 2871-75.
Naik, M. S. P., Sumathi, V. and Kadiri, L. (2017). Response of optimum nitrogen rate in maize with legume intercropping system. SAARC J. Agric. 15: 139-48.
Nandi, S., Maitra, S., Shankar, T., Panda, M. and Sairam, M. (2022). Impact of intercropping of vegetable legumes in summer maize on productivity and competitive ability of crops. Crop Res. 57: 122-27.
Panda, S. K., Maitra, S., Panda, P., Shankar, T., Pal, A., Sairam, M. and Praharaj, S. (2021). Productivity and competitive ability of rabi maize and legumes intercropping system. Crop Res. 56: 98-104.
Panda, S. K., Sairam, M., Sahoo, U., Shankar, T. and Maitra, S. (2022). Growth, productivity and economics of maize as influenced by maize-legume intercropping system. Farm Manage. 7: 61-66.
Patel, A. K., Ardeshna, R. B., Kumar, D. and Mawalia, A. K. (2018). Growth and yield of summer maize as influenced by intercropping systems. J. Pharmacog. Phytochem. 7: 1004-07.
Patil, Y. G., Mevada, K. D., Vaghela, G. M. and Bedis, M. R. (2022). Economics, equivalent yield and land equivalent ratio for maize with chickpea intercropping system under middle Gujarat condition. Pharma Innov. J. 11: 1887-90.
Prakash, V., Manimaran, S., Elankavi, S. and Venkatakrishnan, D. (2019). Evaluation of growth attributes and yield of maize+ pulse intercropping system. Plant Archiv. 19: 3522-24.
Raza, M. A., Yasin, H. S., Gul, H., Qin, R., Din, A. M. U., Khalid, M. H. B. and Yang, W. (2022). Maize/soybean strip intercropping produces higher crop yields and saves water under semi-arid conditions. Front. Plant Sci. 13: doi: org/10.3389/fpls.2022.1006720.
Sagar, L., Singh, S., Sharma, A., Maitra, S., Attri, M., Sahoo, R. K., Ghasil, B. P.,Shankar, T., Gaikwad, D. J., Sairam, M., Sahoo, U., Hossain, A. and Roy, S. (2023). Role of soil microbes against abiotic stresses induced oxidative stresses in plants. In: Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate. pp. 149-77. Singapore: Springer Nature, Singapore.
Sairam, M., Maitra, S., Praharaj, S., Nath, S., Shankar, T., Sahoo, U. and Aftab, T. (2023). An insight into the consequences of emerging contaminants in soil and water and plant responses. In:  Emerging Contaminants and Plants: Interactions, Adaptations and Remediation Technologies, Aftab, T. (ed.). Cham, Springer International Publishing. pp. 1-27.
Sivamurugan, A. P., Ravikesavan, R. and Bharathi, C. (2021).  Evaluation of late maturity maize (Zea mays) hybrids under varying plant density and nutrient levels. Res. Crop. 22: 770-77.
Telkar, S. G., Singh, A. K. and Kant, K. (2018). Determination of effective spatial arrangement for intercropping of maize+soybean using dry matter yield and competition interaction. J. Pharmacog. Phytochem. 7: 2239-45.
Vaghela, G. M., Mevada, K. D., Ninama, S. D. and Patel, H. K. (2020). Influence of intercropping system and integrated nitrogen management in maize (popcorn) (Zea mays everta L.)-chickpea (Cicer arietinum L.) intercropping under middle Gujarat conditions. Int. J. Chem. Stu. 8: 1769-74.
Willey, R. W. and Osiru, D. S. O. (1972). Studies on mixtures of maize and beans (Phaseolus vulgaris) with particular reference to plant population. J. Agric. Sci. 79: 517-29.
Yogeshwar, P., Mevada, K. D. and Vaghela, G. M. (2022). Feasibility of rabi maize (Zea mays L.): chickpea (Cicer arietinum L.) intercropping system under middle Gujarat condition. Int. J. Chem. Stud. 10: 146-51.
 

Global Footprints