Loading...

Characterization and management of Pseudomonas syringae pv. syringae, causing basal kernel blight of barley (Hordeum vulgare L.)


Citation :- Characterization and management of Pseudomonas syringae pv. syringae, causing basal kernel blight of barley (Hordeum vulgare L.). Crop Res. 58: 90-100
SURAJ SHARMA, KAILASH AGRAWAL, SOURABH KHORWAL AND INDU SINGH SANKHLA agkailashindia@gmail.com
Address : Department of Botany, University of Rajasthan, Jaipur-302 004 (Rajasthan), India

Abstract

Globally, basal kernel blight caused by Pseudomonas syringae pv. syringae (PSS) has been recognized as the most serious diseaseo of barley. Recently, polymerase chain reaction (PCR) based gene sequencing is a more powerful tool to identify bacterial pathogens from seeds as well as other plant materials. The disease can be controlled by chemical treatment in the field which has harmful consequences on the environment and biodiversity. The application of plant extracts for the eco-friendly management of seed-borne pathogens is a popular new biocontrol method. Therefore, this study aimed at isolating and identifying PSS from seeds of barley and assessing the antimicrobial potential of the extracts of some plants viz., Citrus limonHibiscus rosa-sinensis, Ricinus communis, Psidium guajava, Murraya koenigii, Withania somnifera, Eucalyptus globulus and Tecomella undulata to promote effective biocontrol strategy. A total of 28 bacterial pathogens were isolated and tested for various biochemical tests. Results of the LOPAT test (+---+) and GATTa test (++--) primarily indicated the presence of PSS. The 16S rRNA gene sequencing was performed on PCR-amplified products with 8F and 1492R primers. The two isolates HV 03 and KASS showed 99.8 and 99.6% homology with strain PSS strain KFB 86 which was isolated from Ficus carica in Serbia. The highest antibacterial activity in vitro was obtained with methanol   extract of W. somnifera, P. guajava, E. globulus and M. koenigii. The results specified that the plant extracts which showed promising antibacterial activity may be considered an effective tool for the management of disease caused by PSS in barley.
                    
 
 

Keywords

16s rRNA sequencing barley basal kernel blight gene sequencing Pseudomonas syringae pv. syringae

References

Balouiri, M., Sadiki, M. and Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6: 71-79.
Baltrus, D. A. and Clark, M. (2019). A complete genome sequence for Pseudomonas syringae pv. pisi PP1 highlights the importance of multiple modes of horizontal gene transfer during phytopathogen evolution. Mol. Plant Pathol. 20: 1013-18.
Bano, A., Gupta, A., Rai, S., Sharma, S. and Pathak, N. (2021). Elucidation of bioactive potential of two commonly grown North Indian Psidium guajava viz., Lalit and Shweta against pathogenic food-borne and MDR bacteria. Biointerface Res. Appl. Chem11: 14090-14102.
Bhalodia, N. R. and Shukla, V. J. (2011). Antibacterial and antifungal activities from leaf extracts of Cassia fistula L.: An ethnomedicinal plant. J. Adv. Pharm. Technol. Res. 2: 104-09.
Camele, I., Elshafie, H. S., Caputo, L. and De Feo, V. (2019). Anti-quorum sensing and antimicrobial effect of Mediterranean plant essential oils against phytopathogenic bacteria. Front. Microbiol. 10: 2619.
Chaturvedi, S., Agrawal, K., Kulshrestha, S. and Narayan, A. (2018). Molecular identification of Pseudomonas syringae (savastoni) pv. phaseolicola in mungbean [Vigna radiata (L.) Wilczek] seeds grown in Rajasthan state, India. Int. J. Curr. Microbiol. Appl. Sci. 7: 1859-66.
Divyapriya, S., Sowmia, C. and Sasikala, S. (2014). Synthesis of zinc oxide nanoparticles and antimicrobial activity of Murraya koeiniggi.  World J. Pharm. Pharm. Sci. 3: 1635-45.
Edwards, U., Rogall, T., Blöcker, H., Emde, M. and Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes: Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843-53.
El-Hefny, M., Salem, M., Behiry, S. and Ali, H. (2020). The potential antibacterial and antifungal activities of wood treated with Withania somnifera fruit extract, and the phenolic, caffeine and flavonoid composition of the extract according to HPLC. Processes 8: 113.
Goszczynska, T., Serfontein, J. J. and Serfontein, S. (2000). Introduction to Practical Phytobacteriology: A Manual for Phytobacteriology (SAFRINET, the Southern African (SADC) Loop of BioNET-INTERNATIONAL Bacterial Disease Unit, ARC-PPRI, Pretoria, South Africa).
Guilbaud, C., Morris, C. E., Barakat, M., Ortet P. and Berge, O. (2016). Isolation and identification of Pseudomonas syringae facilitated by a PCR targeting the whole P. syringae group. FEMS Microbiol. Ecol. 92: 1-9.
Hall, S. J., Dry, L. B., Blanchard, C. L. and Whitelaw-Weckert, M. A. (2016). Phylogenetic relationships of Pseudomonas syringae pv. syringae isolates associated with bacterial inflorescence rot in grape wine. Plant Dis. 100: 607-16.
Hancock, R. D., Hogenhout, S. and Foyer, C. H. (2015). Mechanisms of plant-insect interaction. J. Exp. Bot. 66: 421-24.
Jangir, R., Sankhla, I. S. and Agrawal, K. (2018). Characterization, incidence, transmission and biological control of Ralstonia solanacearum associated with soybean [Glycine max (L.) Merrill] in Rajasthan, India. Res. on Crops 19: 472-79.
Kawaguchi, A., Tanina, K. and Takehara, T. (2017). Molecular epidemiology of Pseudomonas syringae pv. syringae strains isolated from barley and wheat infected with bacterial black node. J. Gen. Plant Pathol. 83: 162-68.
Kawaguchi, A., Yoshioka, R., Mori, M., Nishimura, F., Kawata, K., Tomioka, K. and Takehara, T. (2018) Spatiotemporal distribution of barley and wheat plants naturally infected with bacterial black node in fields in western Japan. J. Gen. Plant Pathol. 84: 35-43.
Khezri, M. and Mohammadi, M. (2018). Identification and characterization of Pseudomonas syringae pv. syringae strains from various plants and geographical regions. J. Plant Prot. Res. 58: 354-61.
Klement, Z. (1963). Rapid detection and the pathogenicity of phytopathogenic Pseudomonas. Nature 199: 299-300.
Lauritsen, J. G., Hansen, M. L., Bech, P. K., Jelsbak, L., Gram, L. and Strube, M. L. (2021). Identification and differentiation of Pseudomonas species in field samples using an rpoD amplicon sequencing methodology. mSystems 6: e0070421.
Mougou, I. and Boughalleb-M’hamdi, N. (2018). Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egypt. J. Biol. Pest Co. 28: 60.
O’Brien, H. E., Thakur, S. and Guttman, D. S. (2011). Evolution of plant pathogenesis in Pseudomonas syringae: A genomics perspective. Annu. Rev. Phytopathol. 49: 269-89.
Patyka, V., Pasichnyk, L., Butsenko, L., Petrychenko, V., Zubachev, S., Dankevych, L., Gnatiuk, Y., Huliaiva, H., Tokovenko, I. and Kalinichenko, A. (2019). In: Express Diagnostics of Phytopathogenic Bacteria and Phytoplasmas in Agrophytocenosis, D. Suszanowich and V. P. Patyka (eds.). Wydawnictow i Drukarnia Świętego Krzyża, Opole, Poland.
Peix, A., Ramírez-Bahena, M. H. and Velázquez, E. (2018). The current status on the taxonomy of Pseudomonas revisited: An update. Infect. Genet. Evol. 57: 106-16.
Rahil Golfam, Khadijeh Kiarostami, Tahmineh Lohrasebi, Kasra Esfahani, Habibollah Ghazvini (2021). Application of molecular farming based on barley plant (Hordeum vulgare L.) platform: A Review. Res. Crop. 22: 410-24.
Ravindran, A., Jalan, N., Yuan, J. S., Wang, N. and Gross, D. C. (2015). Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intrapathovar traits associated with plant pathogenesis. Microbiology Open 4: 553-73.
Riviera, S.  E. V., Escobar-saucedo, M. A., Morales, D., Noé-Aguilar, C. and Rodríguez-Herrera, R.  (2014). Synergistic effects of ethanolic plant extract mixtures against food-borne pathogen bacteria. Afr. J. Biotechnol. 13: 669-704.
Sambrook, J. and Russell, D. W. (2006). The condensed protocols from molecular cloning: A laboratory manual. No. Sirsi i9780879697723 (Cold Pring Harbour Laboratory Press, New York).
Sankhla, I. S., Tak, N., Meghwal, R. R., Choudhary, S., Tak, A., Rathi, S., Sprent, J. I., James, E. K. and Gehlot, H. S. (2017). Molecular characterization of nitrogen-fixing microsymbionts from root nodules of Vachellia (Acacia) jacquemontii, a native legume from the Thar Desert of India. Plant Soil 410: 21-40.
Sankhla, I. S., Meghwal, R. R., Choudhary, S., Rathi, S., Tak, N., Tak, A. and Gehlot, H. S. (2018).  Molecular characterization of microsymbionts associated with root nodules of Crotalaria burhia Buch-Ham. Ex Benth., a native keystone legume species from Thar Desert of India. Indian J. Exp. Biol. 56: 373-85.
Seattler, A. W. (1989). Assessment of yield loss caused by common blight of beans in Uganda. Annual Report of the Bean Improvement Cooperative 35: 113-14.
Siddique, M., Din, N., Ahmad, M., Ali, A., Naz, I., Alam, S. S. and Ullah, N. (2020). Bioefficacy of some aqueous phytoextracts against Clavibacter michiganensis sub-sp. Michiganensis (Smith), the cause of bacterial canker of tomato. Gesunde Pflanzen 72: 207-17.
Simbo Diakite, Elena Pakina, Meisam Zargar, Ahmed Abdalbare A Dire Aldaibe, Parpura Denis, Lapshin Gregory, Abdullah Behzad (2022). Yield losses of cereal crops by Fusarium Link: A review on the perspective of biological control practices. Res. Crop. 23: 418-36.
Tavare, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17: 57-86.
Tyagi, V., Jacob, S. R., Gupta, K. and Brahmi, P. (2020). Status of introduction and conservation in barley (Hordeum vulgare L.). J. Cereal Res. 12: 13-18.
Vaghasiya, Y. and Chanda, S. (2007). Screening of methanol and acetone extracts of 14 Indian medicinal plants for antimicrobial activity. Turk. J. Biol. 31: 243-48.
Verma, A. K., Arora, P. and Agrawal, K. (2016).  Incidence of bacterial blight pathogen Pseudomonas syringae pv. pisi in pea seeds grown in Rajasthan, India. Legum. Res.  39: 1034-37.
Yoshioka, R., Uematsu, H., Takikawa, Y., Kajihara, H. and Inoue, Y. (2020). PCR detection of Pseudomonas syringae pv. syringae, the causal agent of bacterial black node in barley and wheat, using newly designed primer sets. J. Gen. Plant Pathol. 86: 387-92.
Young, J. M. (1992). Pseudomonas syringae pv. japonica (Mukoo 1955) Dye et al. 1980 is a junior synonym of Ps. syringae pv. syringae van Hall 1902. Lett. Appl. Microbiol. 15: 129-30.
 
 
 
 
 

Global Footprints