Loading...

Role of soybean (Glycine max) on the fruiting enhancement of chilli (Capsicum annuum) under intercropping system  


DOI: 10.31830/2454-1761.2022.CR-888    | Article Id: CR-888 | Page : 407-414
Citation :- Role of soybean (Glycine max) on the fruiting enhancement of chilli (Capsicum annuum) under intercropping system . Crop Res. 57: 407-414
BHAWNA, INDU KUMARI, NEHA SALARIA AND ARPANA DEVI salaria.neha3@gmail.com
Address : Department of Life Sciences, Arni University, Kangra-176 401 (Himachal Pradesh), India

Abstract

 Intercropping is an agricultural approach in which two or more crop species, cohabit for a period of time. Intercropping is viewed as a sustainable, environmentally friendly and profitable cropping strategy by its proponents. The field work was carried out in the agricultural land of Arni University, Distt. Kangra of Himachal Pradesh during the months of June-August 2021. The main objective of present study was to make people aware about intercropping system so that they can adopt these agricultural practices and apply them for good crop production. In the current study, intercropping leguminous plant Glycine max was grown with non-leguminous vegetable crop Capsicum annuum in order to achieve higher productivity of non-leguminous crop plants. Different morphological parameters including plant height, leaf length, number of leaves, leaf breadth and fruit size were measured and recorded weekly. Findings of present investigation indicated that plant height (46.89±0.01 cm), leaf length (7.56±0.06 cm), leaf number (33.66±0.33 cm), leaf breadth (4.47±0.03 cm) and fruit size were significantly increased and it ensured that the leguminous crop soybean (Glycine max) had a favourable impact on non-leguminous vegetable crop (Capsicum annuum) production. Future explore in this field may help farmers in order to improve yield stability and to minimize risk of crop failure.

Keywords

Crop rotation intercropping leguminous plants organic Rhizobium

References

Chapagain, T., Pudasaini, R., Ghimire, B., Gurung, K., Choi, K., Rai, L., Magar, S., Bk, B. and Raizada, M. N. (2018). Intercropping of maize, millet, mustard, wheat and ginger increased land productivity and potential economic returns for smallholder terrace farmers in Nepal. Field Crops Res. 227 : 91-101.
Ghosh, P. K., Bandyopadhyay, K. K., Wanjari, R. H., Manna, M. C., Misra, A. K., Mohanty, M. and Subba Rao, A. (2007). Legume effect for enhancing productivity and nutrient use efficiency in major cropping systems–An Indian perspective : A review. J. Sustain. Agric. 30 : 59-86.
Hill, T. A., Ashrafi, H., Reyes-Chin-Wo, S., Yao, J., Stoffel, K., Truco, M. J., Kozik, A., Michelmore, R. W. and Van Deynze, A. (2013). Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip. PloS One 8 : e56200.
Huang, C., Liu, Q., Heerink, N., Stomph, T., Li, B., Liu, R., Zhang, H., Wang, C., Li, X., Zhang, C. and Van der Werf, W. (2015). Economic performance and sustainability of a novel intercropping system on the North China Plain. PloS One 10 : e0135518.
Kouassi, C. K., Nanga, Z. Y., Lathro, S. J., Aka, S. and Koffi-Nevry, R. (2021). Bioactive compounds and some vitamins from varieties of pepper (Capsicum) grown in CÔTE D’IVOIRE. Pure  Appl. Biol. 1 : 40-47.
Layek, J., Das, A., Mitran, T., Nath, C., Meena, R. S., Yadav, G. S., Shivakumar, B. G., Kumar, S. and Lal, R. (2018). Cereal+legume intercropping : An option for improving productivity and sustaining soil health. In : Legumes for Soil Health and Sustainable Management. Springer, Singapore. pp. 347-386.
Li, L., Li, S. M., Sun, J. H., Zhou, L. L., Bao, X. G., Zhang, H. G. and Zhang, F. S. (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. 104 : 11192-96.
Li, L., Zou, Y., Wang, Y., Chen, F. and Xing, G. (2022). Effects of corn intercropping with soybean/peanut/millet on the biomass and yield of corn under fertilizer reduction. Agriculture 12 : 151.
Lithourgidis, A. S., Dordas, C. A., Damalas, C. A. and Vlachostergios, D. (2011). Annual intercrops : An alternative pathway for sustainable agriculture. Aust. J. Crop Sci5 : 396-410.
Lyngdoh, D. Daphibanri, Singh, A., Ray, L. and Rangappa, K. (2020). Effect of planting pattern of intercropping legumes soybean, groundnut and mungbean on yield and nutrient uptake of legumes from the intercropping system at mid altitude of Meghalaya. J. Pharmacogn. Phytochem. 9 : 2137-40.
Maitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bhadra, P., Palai, Bharati, J., Jena, J., Bhattacharya, U., Duvvada, Kumar, S., Lalichetti, S. and Sairam, M. (2021). Intercropping–A low input agricultural strategy for food and environmental security. Agronomy 11 : 343.
Maitra, S., Palai, Bharati, J., Manasa, P. and Kumar, D. P. (2019). Potential of intercropping system in sustainable crop productivity. Int. J. Agric. Environ. Biotechnol. 12 : 39-45.
Mandal, D. and Loya, B. (2021). Evaluation of physico-chemical attributes and shelf life of organic Mizo chilli (Capsicum frutescens L.) as influenced by post-harvest application of essential oils. Res. Crop. 22 : 301-08.
Mucheru-Muna, M., Pypers, P., Mugendi, D., Kung’u, J., Mugwe, J., Merckx, R. and Vanlauwe, B. (2010). A staggered maize-legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Res115 : 132-39.
Omer, A. M. (2016). Greenhouses for food production and the environment. Glob. J. Technol. Optim. 7 : 190.
Rusinamhodzi, L., Corbeels, M., Nyamangara, J. and Giller, K. E. (2012). Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Res. 136 : 12-22.
Sharma, S., Kaur, M., Goyal, R. and Gill, B. S. (2014). Physical characteristics and nutritional composition of some new soybean [Glycine max (L.) Merrill] genotypes. J. Food Sci. Technol. 51 : 551-57.
Sharmili, K., Yasodha, M., Rajesh, P., Rajendran, K., Thankappan, S. and Minithra, R. (2021). Millet and pulse-based intercropping system for agricultural sustainability - A review. Crop Res. 56 : 369-78.
Shiriyappagoudar, T. and Saikia, J. (2019). Performance of chilli (Capsicum annuum) cv. ‘Krishna Jolokia’ as influenced by organic inputs and microbial consortium under Assam condition. Int. J. Curr. Microbiol. Appl. Sci. 8 : 2038-42.
Stagnari, F., Maggio, A., Galieni, A. and Pisante, M. (2017). Multiple benefits of legumes for agricultural sustainability : An overview. Chem. Biol. Technol. Agric. 4 : 1-13.
Trenbath, B. R. (1993). Intercropping for the management of pests and diseases. Field Crops Res. 34 : 381-405.
van Asten, P. J., Wairegi, L. W. I., Mukasa, D. and Uringi, N. O. (2011). Agronomic and economic benefits of coffee-banana intercropping in Uganda’s smallholder farming systems. Agric. Syst. 104 : 326-34.
Vandermeer, J. (1989). The Ecology of Intercropping. Cambridge University Press, New York. pp. 237.
Wahocho, N. A., Zeshan A. S., Jogi, Q., Talpur, K. H. and Leghari, S. J. (2016). Growth and productivity of chilli (Capsicum annuum L.) under various nitrogen levels. Sci. Int. 28 : 1321-26.
Yi-Shen, Z., Shuai, S. and FitzGerald, R. (2018). Mungbean proteins and peptides : Nutritional, functional and bioactive properties. Food Nutr. Res. 62 : 1290.
Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., Fan, J., Yang, S., Hu, L., Leung, H. and Mew, T. W. (2000). Genetic diversity and disease control in rice. Nature 406 : 718-22.
 
 
 

Global Footprints