Loading...

Isolation and characterization of potential P- solubilizer rhizobacteria from rhizosphere of wheat (Tritium aestivum) from lower Himalayan zone of Himachal Pradesh ​


DOI: 10.31830/2454-1761.2022.CR-882    | Article Id: CR-882 | Page : 355-262
Citation :- Isolation and characterization of potential P- solubilizer rhizobacteria from rhizosphere of wheat (Tritium aestivum) from lower Himalayan zone of Himachal Pradesh​. Crop Res. 57: 355-262
VIJAY KUMAR, POONAM, INDU, RICHA AND SAHIL KUMAR vijaybhatiadreams@gmail.com
Address : Division of Microbiology, School of Pharmaceutical and Health Sciences, Career Point University, Hamirpur-176041 (Himachal Pradesh), India

Abstract

Inorganic fertilizer is an essential component of the modern agricultural system. The overuse of fertilizer brought serious problems to the present and future generations like polluted air, water, soil, degraded lands, depleted soils and increased emissions of greenhouse gases. The excessive use of chemical fertilizers from the last decade in the agricultural system of India showed harmful effects on soil structure, soil microbial diversity, soil texture and water holding capacity of soil. Therefore, the present investigation was an attempt to isolate and identify the most potent PGPR and to check their efficacy for P- solubilization. In total,48 bacterial isolates were isolated from three different sites of Hamirpur district. The total rhizobacterial population on nutrient agar medium harboured the maximum (250x105 CFU/g soil) microbial population at Deotsidh. However, population of PGPR isolates on Pikovskaya’s agar was found highest at site Deotsidh (220x105 CFU/g soil). In case of Jensen’s medium, maximum rhizobacterial populations were found highest at site Deotsidh (200x105 CFU/g soil). In the case of King’s B agar, maximum rhizobacterial population was found at site Deotsidh (230x105 CFU/g soil). Among 48 isolates, 37 isolates were found positive for P-solubilization.

Keywords

Bacteria nutrition P-solubilization PGPR rhizobacteria rhizosphere wheat

References

 
Al-Hadi Hassan, A. A. and Al-Hassan Ahmed, S. A. (2018). Role of plant growth-promoting rhizobacteria in reducing the harmful effect of water stress on some physiological traits of popcorn. Res. Crop. 19: 398-04.
Aloo, B. N., Makumba, B. A. and Mbega, E. R. (2019). The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol. Res. 219 : 26-39. doi: 10.1016/j.micres.2018.10.011.
Anand, K., Kumari, B. and Mallick, M.A. (2016). Phosphate solubilizing microbes: An effective and alternative approach as biofertilizers. J. Pharm. Sci. 8 : 37-40.
Cassan, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C. and Luna, V. (2009). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur. J. Soil Biol. 45 : 28-35. doi: 10.1016/j.ejsobi.2008.08.005.
Golfam Rahil, Rostami Khadijeh Kia, Lohrasebi  Tahmineh, Hasrak  Shabnam and Razavi  Khadijeh (2022). Essential enzymes in the biosynthesis pathway of wheat (Triticum aestivum) starch: A review. Farm. Manage. 6 : 59-69.
Goswami, D., Dhandhukia, P., Patel, P. and Thakker, J. N. (2014). Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol. Res. 169 : 66-75. Doi: 10.1016/j.micres.2013.07.004.
Kalayu G. (2019). Phosphate solubilizing microorganism: Promosing approach as biofertilizers. Int. J. Agron. 50 : 1-7. Doi : org/10.1155/2019/4917256.
Krey, T., Vassilev, N., Baum, C. and Eichler-Lobermann, B. (2013). Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur. J. Soil Biol. 55 : 124-30. doi: 10.1016/j.ejsobi.2012.12.007.
Kumar, A., Maurya, B. R., Raghuwanshi, R., Meena, V. S. and Tofazzal Islam, M. (2017). Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic Plain of India. J. Plant Growth Regul. 36 : 608-17. doi: 10.1007/s00344-016-9663-5.
Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P. and Pareek, A. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front. Plant Sci. 8 : 172. doi: 10.3389/fpls.2017.00172.
Oteino, N., Lally, R. D., Kiwanuka, S., Lloyd, A., Ryan, D. and Germaine, K. J. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 6 : 745. doi: 10.3389/fmicb.2015.00745.
Patel, C. J., Sisodiya, D. B., Patel, A. R. and Bumbadiya, N. R. (2021). Effect of different levels of nitrogen, phosphorus and bio-fertilizers on growth and yield of irrigated wheat (Triticum aestivum) under conserved moisture condition. Crop Res. 56 : 8-13.
Perez-Montano, F., Jimenez-Guerrero, I., Contreras Sanchez-Matamoros, R., Lopez-Baena, F. J., Ollero, F. J. and Rodríguez-Carvajal, M. A. (2013). Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Res. Microbiol. 164 : 749-60. Doi: 10.1016/j.resmic. 2013.04.001.
Peter, R. and Sandra, J.H. (2015). The contribution of wheat to human diet and health. Food Energy Secur. 4 : 178-202.
Riggs, P. J., Chelius, M. K., Iniguez, A. L., Kaeppler, S. M. and Triplett, E. W. (2001). Enhanced maize productivity by inoculation with diazotrophic bacteria. Funct. Plant Biol. 28 : 829-36. Doi: 10.1071/PP01045.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. and Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2 : doi: 10.1186/2193-1801-2-587.
Shewry, P. R. (2009). Wheat. J. Exptl. Bot. 60: 1537-53.
 
 
 
 

Global Footprints