Loading...

Phytoremediation of heavy metals (Cd & Pb) in sewage irrigated soils using Chenopodium album 


DOI: 10.31830/2454-1761.2022.CR-825    | Article Id: CR-825 | Page : 346-354
Citation :- Phytoremediation of heavy metals (Cd & Pb) in sewage irrigated soils using Chenopodium album. Crop Res. 57: 346-354
DEVI PRASAD SHUKLA, DINESH MANI, JAGANNATH PATHAK, HIMANCHAL VISHWAKARMA AND VIPIN SAHU shukladp916@gmail.com
Address : Sheila Dhar Institute of Soil Science, Department of Chemistry, University of Allahabad, Prayagraj-211002, Uttar Pradesh, India
Submitted Date : 19-07-2022
Accepted Date : 28-07-2022

Abstract

        The present study was carried out in order to observe the phytoremediation potential of Chenopodium album grown on sewage irrigated soils.  Soil and plant samples were collected from different sewage irrigated sites (Naini, Buxibandh, Preetam Nagar, Rajapur and Phaphamau) of Prayagraj, Uttar Pradesh, India. The analysis of the result showed that Chenopodium album has ability to phytoextract the different concentrations of Cd and Pb varied from 2.35±0.10-2.73±0.08, 2.85±0.10-3.02±0.17, 3.11±0.05-3.60±0.15 and 3.20±0.05-3.92±0.13, 3.86±0.09-4.59±0.08, 4.65±0.11-5.36±0.16 mg/kg in leaves, shoot and root respectively. The results shows the maximum potential of accumulation of Pb 5.36±0.16   mg/kg followed by Cd 3.60±0.15  mg/kg in Naini sewage irrigated site. The maximum dry biomass yield of Chenopodium album plants were recorded in Phaphamau sewage irrigated site of Cd and Pb polluted soils ranging from 1068.14±8.09 and 1083.30±3.15 g/m2 respectively while the minimum dry biomass yield as 914.58±2 and 988.46±1.40 g/m2 were recorded from Cd and Pb polluted soils in Naini sewage irrigated site. Furthermore, their bioconcentration factor (BCF) and translocation factor (TF) >1.0 indicated the hyper accumulation efficiency of plants ranges of Cd and Pb were recorded 1.98±0.11-2.04±0.10, 2.52±0.12-2.62±0.07 and 1.09±0.08-1.19±0.11, 1.14±0.12-1.20±0.08 mg/kg respectively. Thus, this study will be helpful for the decontamination of highly sewage irrigated affected soils.

Keywords

Bioconcentration Chenopodium album heavy metals phytoremediation sewage irrigated soils translocation  


References

Arbaoui, S., Campanella, B., Rezgui, S., Paul, R. and Bettaieb, T. (2014). Bioaccumulation and photosynthetic activity response of kenaf (Hibicus cannabinus L.) to cadmium and zinc. Greener J. Agric. Sci. 4 : 91-100.
Barman, S. C., Sahu, R. K. and Chaterjee, C. (2000). Distribution of heavy metals in wheat, mustarch and weed grown in field irrigated with industrial effluent. Bull. Environ. Contam. Toxicol. 64 : 489-96.
Dinh, K. H. T. and Shima, K. (2022). Effects of forest reclamation methods on soil physicochemical properties in North-Central Vietnam. Res. Crop. 23 : 110-18.
Gadd, G. M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111 : 3-49.
Gajewska, E. and Sklodowska, M. (2007). Relations between tocopherol, chlorophyll and lipid peroxides contents in shots of Ni-treated wheat. Plant Physiol. 164 : 364-66.
Gomes, S. I., Goncalves, M. F., Bicho, R. C., Roca, C. P., Soares, A. M. and Scott‑Fordsmand, J. J. (2018). High‑throughput gene expression in soil invertebrate embryos – Mechanisms of Cd toxicity in Enchytraeus crypticus. Chemosphere 212 : 87‑94.
Gupta, N., Khan, D. K. and Santra, S. C. (2008). An assessment of heavy metal contamination in vegetable grown in waste water irrigated areas of Titagarh, West Bengal, India. Bull. Environ. Contam. Toxicol. 80 : 115-18.
 Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Aamer, M., Nawaz, M.,  Ali, A., Ullah Khan, M. A. and Khan, T. A. (2019). Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities - a review. Environ. Sci. Pollut. Res. 26 : 12673-2688.
 Hussain, B., Ashraf, M. N., Rahman, S. U., Abbas, A., Lia, J. and Farooq, M. (2021). Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Sci. Total Environ. 754 :142-88.
Janas, K. M., Zieli, A., Ska-Tomaszewska, J., Rybaczek, D., Maszewski, J., Posmyk, M. M., Amarowicz, R. and Kosinska, A. (2010). The impact of copper ions on growth, lipid peroxidation, and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. J. Plant Physiol. 167 : 270-76.
Karaca, A. (2004). EVect or organic wastes on the extractability of cadmium, copper, nickel and zinc in soil. Geoderma. 122 : 297-303.
Kato, S., Haruta, S., Cui, Z. J., Ishii, M. and Igarashi, Y. (2004). Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic noncellulolytic bacteria. FEMS Microbiol. Ecol. 51 : 133-42.
Kumar, C. and Mani, D. (2010). Enrichment and management of heavy metals in sewage-irrigated soil. Lap LAMBERT Academic Publishing, Dudweiler, Germany.
Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z. and Huang L. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci. Total Environ. 468-469 : 843-53.
Liu, S., Yang, B., Liang, Y., Xiao, Y. and Fang, J. (2020). Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ. Sci. Pollut. Res. 27 : 16069-6085.
Rehman, M. Z., Rizwan, M., Hussain, A., Saqib, M., Ali, S. and Sohail, M. I. (2018). Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd‑spiked soil. Environ. Pollut. 241 : 557‑65.
Sinha, S., Gupta, A. K., Bhatt, K., Pandey, K., Rai, U. N. and Singh, K. P. (2006). Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: relation with physicochemical properties of the soil Environ. Monit. Assess. 115 : doi: 10.1007/s10661-006-5036-z.
Stoltz, E. and Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings.  Environ. Exp. Bot. 47 : 271-80.
Tewari, R. K., Kumar, P., Sharma, P. N. and Bisht, S. S. (2002). Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci. 162 : 381-88.
Veeral, D. K. M. and Kalaimathi, P. (2019). Effects of different levels of industrial wastes on nodulation pattern and biological properties of soil. Crop Res. 54 : 135-38.
Yoon, J., Cao, X., Zhou, Q. and Ma, L. Q. (2006). Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 368 : 456-64.
Zhou, W. and Qiu, B. (2005). Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci. 169 : 737-45.
Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M. and Anjum, M. Z. (2019). Lead toxicity in plants: impacts and remediation. J. Environ. Manag250 : 109-57.
 

Global Footprints