Loading...

Impact of foliar organic-mineral fertilizers on sugar beet biomass and yield in response to phosphorus and potassium levels 

Citation :- Impact of foliar organic-mineral fertilizers on sugar beet biomass and yield in response to phosphorus and potassium levels. Res. Crop. 25: 707-716
RAUSHAN RAMAZANOVA, TATYANA SHARYPOVA, MOLDIR ZHUMAGULOVA, ALTYNAY SULEIMENOVA, MAKSAT POSHANOV, ABAY AYAN AND MEISAM ZARGAR zhumagulova.mk@mail.ru; zargar_m@pfur.ru
Address : Uspanov Kazakh Research Institute of Soil Science and Agrochemistry, 75V, al-Farabi Ave, Almaty 050060, Kazakhstan
Submitted Date : 12-10-2024
Accepted Date : 28-10-2024

Abstract

Sugar beet is a vital industrial crop for sugar production, but in the Zhetysu region, its yield is constrained by low soil fertility and suboptimal nutrient management. This study aimed to investigate the effects of foliar organic-mineral fertilization, combined with specific phosphorus and potassium rates, on biomass accumulation and root yield in irrigated gray soils. The goal was to identify the most effective fertilization schemes to maximize economic yield while improving overall crop productivity and reducing environmental impacts. The research was conducted over two agricultural years (2023-2024) in the Koksu district of the Zhetysu region Kazakhstan, on separate plots with three replications and four variants of foliar fertilizer application: urea, Amino Turbo bio-stimulant, Ruter AA organic-mineral fertilizer, and Geofert, with and without the application of calculated doses of phosphorus-potassium fertilizers. Foliar fertilizing was applied at two stages of sugar beet plant development: (1) during the formation of 4-6 leaves and (2) during the formation of 8-10 leaves. On average, over the two-years of study period, the most significant effect was observed when combining the main application of phosphorus-potassium fertilizers with the foliar application of the Aminoturbo bio-stimulant, resulting in a yield capacity of 112.4 t/ha, which was 2.95 t/ha higher than yield capacity obtained with traditional foliar application of urea. Geogumat fertilizer, containing microelements, microorganism strains, and humic acids, increased beet yield capacity by 37.35 t/ha compared to the control (968.35 t/ha), suggesting that foliar fertilizing of sugar beets can be a sustainable farming method capable of increasing crop yields on low-fertility light gray soils and can be recommended as part of fertilizer application protocols in beet-growing farms.

Keywords

Biomass foliar fertilizing phosphorus potassium sugar beet yield capacity 

References

Artyszak, A. and Gozdowski, D. (2021). Influence of various forms of foliar application on root yield and technological quality of sugar beet. Agriculture 11: doi:10.3390/agriculture11080693.
Babaeian, M., Tavassoli, A., Ghanbari, A., Esmaeilian, Y. and Fahimifard, M. (2011). Effects of foliar micronutrient application on osmotic adjustments, grain yield and yield components in sunflower (Alstar cultivar) under water stress at three stages. J. Sci. Tech. Agri. Nat. Res. 6: 1204-08.
Bărdaş, M., Rusu, T., Russu, F., Șimon, A., Chețan, F., Ceclan, O. A., Rezi, R., Popa, A. and Cărbunar, M. M. (2023). The impact of foliar fertilization on the physiological parameters, yield, and quality indices of the soybean crop. Agronomy 13: doi.10.3390/agronomy13051287.
Bayat, M. and Zargar, M. (2020). Field bindweed (Convolvulus arvensis) control and winter wheat response to post herbicides application. J. Crop Sci. Biotech. 23: 149-55.
Bayat, M., Engeribo, A., Meretukov, Z., Aigerim, A., Temewei, A. G., Dubrovina, T. and Zargar, M. (2019a). Response of common lambsquarters (Chenopodium album L.) to chemical weed control programs. Res. on Crops. 20: 859-63. 
Bayat, M., Kavhiza, N., Orujov, E., Zargar, M., Akhrarov, M. and Temewei, A. G. (2019b). Integrated weed control methods utilizing planting pattern in sugar beet. Res. on Crops. 20: 412-18.
Dass, A., Rajanna, G. A., Babu, S., Lal, S. K., Choudhary, A. K., Singh, R., Rathore, S. S., Kaur, R., Dhar, S., Singh, T., Raj, R., Shekhawat, K., Singh, C. and Kumar, B. (2022). Foliar application of macro- and micronutrients improves the productivity, economic returns, and resource-use efficiency of soybean in a semiarid climate. Sustainability 14: 10.3390/su14105825.
Dimcheva, E., Enchev, S. and Kikindonov, T. (2021). Effect of mineral and organic fertilization on the dynamics of biomass accumulation of sugar and fodder beet. Bulg. J. Agric. Sci. 27: 588–92.
Ding, Y., Zhao, W., Zhu, G., Wang, Q., Zhang, P. and Rui, Y. (2023). Recent trends in foliar nanofertilizers: A Review. Nanomat. 13: doi.10.3390/ nano13212906. 
Dospehov, B. A. (2011). Metodika polevogo opyta: (s Osnovami statisticheskoi obrabotki rezultatov issledovanii). Alyans Moskva, Russia. pp. 352. (in Russian)
Efthimiadou, A., Sparangis, P., Leonidakis, D., Kasimatis, C. N., Kakabouki, I., Mylonas, I., Ninou, E., Gianniotis, P. and Katsenios, N. (2022). Comparative evaluation of mineral and organo-mineral nitrogen fertilization and the role of amino acids as plant growth promoters in maize cultivation. Agronomy 12: doi:10.3390/agronomy12112638.
Fan, J., Zheng, S. Z., Hu, H.Q., Huang, Z. L., Fu, Q. L. and Huang, Z. L. (2010). Effect of spraying foliar fertilizer on pakchoi with the treatment of different base fertilizers. Soil Fertil. Sci.China. 28: 25-30 (in Chinese). doi:10.3724/SP.J.1011.2010.01385.
Ferrari, M., Dal Cortivo, C., Panozzo, A., Barion, G., Visioli, G., Giannelli, G. and Vamerali, T. (2021). Comparing soil vs. foliar nitrogen supply of the whole fertilizer dose in common wheat. Agronomy 11: doi:10.3390/agronomy11112138.
Franzoni, G., Cocetta, G., Prinsi, B., Ferrante, A. and Espen, L. (2022). Bio-stimulants on crops: their impact under abiotic stress conditions. Horticul. 8: doi:10.3390/ horticulturae8030189.
Gusev, V. N., Bastaubayeva, S. O., Tabynbayeva, L. K., Zhusupbekov, E. K. and Musagodzhaev, N. T. (2023). Mineral fertilizers impact on sugar beet productivity in Southeast Kazakhstan. SABRAO J. Breed. Genet. 55: 1803-11. doi:10.54910/ sabrao2023.55.5.31.
Hamze, M. R., Khoshgoftarmanesh, A. H., Shariatmadari, H. and Baninasab, B. (2018). The effects of foliar applied potassium in the mineral form and complexed with amino acids on pistachio nut yield and quality. Arch. Agron. Soil Sci. 64: 1432–45. doi:10. 1080/03650340.2018.1439580.
Jaggard, K. W., Qi, A. and Armstrong, M. J. (2009). A meta-analysis of sugar beet yield responses to nitrogen fertilizer measured in England since 1980. J. Agric. Sci. 147: 287 - 301. doi:10.1017/S0021859609008478.
Kavhiza, N. J., Zargar, M., Prikhodko, S. I., Pakina, E. N., Murtazova, K. M.-S. and Nakhaev, M. R. (2022). Improving crop productivity and ensuring food security through the adoption of genetically modified crops in Sub-Saharan Africa. Agronomy 12:  doi:10.3390/agronomy12020439. 
Kinaci, E. and Gulmezoglu, N. (2007). Grain yield and yield components of triticale upon application of different foliar fertilizers. Interciencia 32: 624-28
Kosyakin, P. A., Borontov, O. K., Manaenkova, E. N. and Minakova, O. A. (2019). Growth dynamics, consumption of nutrients and yield of sugar beet depending on fertilizers and treatment of leached chernozem in crop rotation in the central-chernozem region. Agrochemistry 7: 57-66. doi:10.1134/S0002188119070081 (in Russian).
Li, S., Wang, X., Kou, C., Lv, J. and Gao, J. (2022). Crop yield, nitrogen recovery, and soil mineral nitrogen accumulation in extremely arid oasis cropland under long-term fertilization management. Atmosphere 13: doi:10.3390/atmos13050754.
Liu, Y., Zhou, J., Sui, N., Ding, T., Zhang, X., Song, J. and Wang, B. (2013). Effects of salinity and nitrate nitrogen on growth, ion accumulation, and photosynthesis of sugar beet. Adv. Mat. Res. 726: 4371-80. doi:10.4028/www.scientific.net/AMR.726-731.4371.
Mahmoudi, T., Hamze H. and Lak, G. (2023). Impact of biofertilizer and zinc nanoparticles on enzymatic, biochemical, and agronomic properties of sugar beet under different irrigation regimes. Zemdirbю Agric. 110: 217–24. doi:10.13080/z-a.2023.110.025.
Marajan, W. A., Hadad, M. A., Gafer, M. O., Sulfab, H. A. and Ali, M. A. (2017). Effect of mineral and bio-organic fertilizers on sugar beet growth under semi-arid zone. Int. J. Sci. Res. 6: 2319-7064. doi:10.21275/19061706.
Mekdad, A. and Shaaban, A. (2020). Integrative applications of nitrogen, zinc, and boron to nutrients-deficient soil improves sugar beet productivity and technological sugar contents under semi-arid conditions. J. Plant Nutr. 43: 1-16. doi:10.1080/01904167. 2020.1757701.
Melzer, S., Müller, A. and Jung, C. (2014). Genetics and genomics of flowering time regulation in sugar beet. In: Genomics of plant genetic resources. (Eds. Tuberosa, R., Graner, A., Frison, E.). Vol 2, Springer, Dordrecht. pp. 3-26. doi.10.1007/978-94-007-7575-6_1.
Mosaad, I. S. M., Serag, A. H. I. and Sheta, M. H. (2022). Promote sugar beet cultivation in saline soil by applying humic substances in-soil and mineral nitrogen fertilization. J. Plant Nutr. 45: 2447–64. doi:10.1080/01904167.2022.2046063.
Naserzadeh, Y., Kartoolinejad, D., Mahmoudi, N., Zargar, M., Pakina, E., Heydari, M., Astarkhanova, T. and Kavhiza, N. J. (2018). Nine strains of Pseudomonas fluorescens and P. putida: Effects on growth indices, seed and yield production of Carthamus tinctorius L. Res. on Crops. 19: 622-32.
Niu, J., Liu, C., Huang, M., Liu, K. and Yan, D. (2021). Effects of foliar fertilization: a review of current status and future perspectives. J. Soil Sci. Plant Nutr. 21: 104–18. doi:10. 1007/s42729-020-00346-3.
Pliushchikov, V., Bayat, M., Zargar, M., Akhrarov, M., Orujov, E. and Hassan, N. S. (2019). Common lambsquarters response to the ALS inhibitor herbicides. Res. on Crops. 20: 701-05. 
Rašovský, M., Pačuta, V., Ducsay, L. and Lenická, D. (2022). Quantity and quality changes in sugar beet (Beta vulgaris provar. altissima doel) induced by different sources of bio-stimulants. Plants. 11: doi:10.3390/plants11172222.
Romanowska-Duda, Z., Grzesik, M. and Janas, R. (2018). Stimulatory impact of stymjod on sorghum plant growth, physiological activity and biomass production in field conditions. In: Renewable energy sources: engineering. (Eds. Mudryk, K., Werle, S.), Technology, Innovation. Springer Proceedings in Energy. Springer, Cham. pp. 253-60. doi:10.1007/978-3-319-72371-6.
Sikorska, A., Gugała, M. and Zarzecka, K. (2019). The impact of different types of foliar feeding on the architecture elements of a winter rape (Brassica napus L.) field. Appl. Ecol. Environ. Res. 18: 263-73. doi:10.15666/aeer/1801_263273.
Tooming, H. G. (1977). Solar radiation and crop formation. Hydrometeoizdat, Leningrad. pp. 200. http://elib.rshu.ru/files_books/pdf/img-090517.pdf (accessed on 23.08.2024).
Trevisan, S., Francioso, O., Quaggiotti, S. and Nardi, S. (2010). Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors. Plan. Signal. Behav. 5: 635–43. doi:10.4161/psb.5.6.11211. 
Zargar, M., Astrakhanova, T., Pakina, E., Astrakhanov, I., Rimikhanov, A., Gyul’magomedova, A., Ramazanova, Z. and Rebouh, N. (2017a). Survey of biological components efficiency on safety and productivity of different tomato cultivars. Res. on Crops. 18: 283-92. doi:10.5958/2348-7542.2017.00048.1.
Zargar, M., Bodner, G., Tumanyan, A., Tyutyuma, N. Plushikov, V., Pakina, E., Shcherbakova, N. and Bayat, M. (2018). Productivity of various barley (Hordeum vulgare L.) cultivars under semi-arid conditions in southern Russia. Agron. Res. 16: 2242-53. doi:10.15159/AR.18.176.
Zargar, M., Najafi, H., Fakhri, K., Mafakheri, S. and Sarajuoghi, M. (2011). Agronomic evaluation of mechanical and chemical weed management for reducing use of herbicides in single vs. twin row sugar beet. Res. on Crops. 12: 173-78.
Zargar, M., Pakina, E., Plushikov, V., Vvedenskiy, V. and Bayat, M. (2017b). Efficacy of reducing linture doses and biological components for an effective weed control in wheat fields. Bulg. J. Agric. Sci. 23: 980-87.
Zargar, M., Romanova, E., Trifonova, A., Shmelkova, E. and Kezimana, P. (2017c). AFLP analysis of genetic diversity in soybean [Glycine max (L.) Merr.] cultivars Russian and foreign selection. Agron. Res. 15 : 2217-25.

Global Footprints