Loading...

Role of Albitbr bio-stimulant application on growth, yield and quality characteristics of tomato (Lycopersicon esculentum) cultivars under open field conditions

Citation :- Role of Albitbr bio-stimulant application on growth, yield and quality characteristics of tomato (Lycopersicon esculentum) cultivars under open field conditions. Res. Crop. 25: 635-640
BAHRAN KNFE YAKOB AND GINS MURAT SABIROVICH bahranknfe@gmail.com
Address : Department of Agro-biotechnology, Faculty of Agriculture, Rudn University, Moscow, Russia
Submitted Date : 8-10-2024
Accepted Date : 24-10-2024

Abstract

Climate change coupled with the indiscriminate use of inorganic fertilizers and pesticides are causing tremendous challenges on the production potentials of crops and also health of the people of the world. As part of the sustainable production strategy, the current study was conducted at the experimental station Vniccok, Russia during summer of 2024 using a bio-stimulant “Albitbr on tomato crop. In the experiment, four different cultivars were treated with seven different doses of the bio-stimulant (control, 0.1, 0.5, 1, 2.5, 5, 10 and 50 L/ha). The highest significant leaf area (115.23 cm2) and yield of tomato fruits (83.35 t/ha) were obtained from Fenaric and Malets cultivars, respectively. Application of the bio-stimulant also resulted in a significant effect on leaf area, total yield, titratable acidity (TA) as well as total soluble solids (TSS)/TA with the highest leaf area (119.88 cm2), total yield (78.81 t/ha) being produced from the bio-stimulant dose of 2.5 L/ha, whereas the highest values of TA (0.28 %) and TSS/TA (21.72) were obtained from 0.1 L/ha and 50 L/ha, respectively. 

Keywords

Climate bio-stimulant cultivar sustainable production tomato

References

Abad, M. S. F., Abedi, B., Ne’emati, S. H. and Arouiee, H. (2019). Studying the effects of foliar spraying of seaweed extract as a bio-stimulant on‎ the increase on the yield and quality of tomato (Lycopersicon esculentum L.)‎. World J. Environ. Biol. Sci. 8: 11-17.
Bilinska, O., Kulka, V., Samets, N. and Golod, R. (2021). The influence of the use of the drug Albit on the formation of the seed productivity of the pre-basic material of potatoes. UKR Black Sea Reg. Agric. Sci. 2 :71-79. doi:10.31521/2313-092X/2021-1(109)-1.
Biratu, W. (2018). Review on the effect of climate change on tomato (Solanum lycopersicon) production in Africa and mitigation strategies. J. Nat. Sci. Res. 8: 2225-0921.
Bulgari, R., Franzoni, G. and Ferrante, A. (2019). Bio-stimulants application in horticultural crops under abiotic stress conditions. Agronomy 9: doi:10.3390/agronomy9060306.
Calvo, P., Nelson, L. and Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant Soil 383: 3–41. doi:10.1007/s11104-014-2131-8.
Garrett, K. A., Nita, M., De Wolf, E. D., Esker, P. D., Gomez-Montano, L. and Sparks, A. H. (2016). Chapter 21-Plant pathogens as indicators of climate change. In: Climate Change, 2nd ed. (ed. Letcher, T.M.). ELS, Amsterdam, Netherlands. pp. 325–38. doi:10.1016/B978-0-444-63524-2.00021-X.
Gedeon, S., Ioannou, A., Balestrini, R., Fotopoulos, V. and Antoniou, C. (2022). Application of biostimulants in tomato plants (Solanum lycopersicum) to enhance plant growth and salt stress tolerance. Plants 11: doi:10.3390/plants11223082.
Habib-ur-Rahman, M., Ahmad, A., Raza, A., Hasnain, M. U., Alharby, H. F., Alzahrani, Y. M. Bamagoos, A. A.,  Hakeem, K. R., Ahmad, S., Nasim, W.,  Ali, S.,  Mansour, F. and El-Sabagh, A. (2022). Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 13: doi:10.3389/fpls.2022.925548.
Kalozoumis, T. M. (2023). Combining solid digestate with microorganisms and a bio-stimulant for a potentially enhanced quality of soilless organically grown tomato plants. Second cycle, A2E. Alnarp: SLU, Dept. of Plant Breeding (from 130101).
Kumar, A. and Verma, J. P. (2018). Does plant–microbe interaction confer stress tolerance in plants: A review.  Microbiol. Res.  207: 41–52.  doi:10.1016/j.micres.2017.11.004.
Mzibra, A., Aasfar, A., Benhima, R., Khouloud, M., Boulif, R., Douira, A., Bamouh, A. and Kadmiri, M, I. (2021). Bio-stimulants derived from Moroccan seaweeds: seed germination metabolomics and growth promotion of tomato plant. J. Plant Growth Regul. 40: 353-70. doi:10.1007/s00344-020-10104-5.
Selim, S., El Haddad, M., Nassef, M., Radwan, W. and Abu-Hussien, S. (2021). Promoting of abiotic stress–induced resistance using poly-β- hydroxybutyrate (PHB) by Rhizobium phaseoli in common bean plants. Arab U. J. Agric. Sci. 29: 277-92. doi:10.21608/ajs.2021.64758.1342.
Shabani, E., Ansari, N. A. and Fayezizadeh, M. R. (2023). Plant growth bio-stimulants of seaweed extract (Sargasum boveanum): Implications towards sustainable production of cucumber. Yuzuncu Yıl U. J. Agric. Sci. 33: 478-90. doi:10.29133/yyutbd.1288078.
Teka, T. A. (2013). Analysis of the effect of maturity stage on the postharvest biochemical quality characteristics of tomato (Lycopersicon esculentum Mill.) fruit. Int. Res. J. Pharm. Appl. Sci. 3: 180-86.
Tigist, M., Workneh, T. S. and Woldetsadik, K. (2013). Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Tech. 50: 477-86.  doi:10.1007/s13197-011-0378-0.
Ullah, A., Ali, S., Khan, A., Shah, S. M., Amin, F., Ullah, A., Khan, S. and Ullah, Z. (2019). Influence of foliar application of bio-stimulants on growth, yield and chemical composition of tomato. Int. J. Biosci. 14: doi:10.12692/ijb/14.1.309-316.
Zhang, P., Zhang, H., Wu, G., Chen, X., Gruda, N., Li, X., Dong, J. and Duan, Z. (2021). Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Front. Plant Sci. 12: doi:10.3389/fpls.2021.736613.

Global Footprints