Abad, M. S. F., Abedi, B., Ne’emati, S. H. and Arouiee, H. (2019). Studying the effects of foliar spraying of seaweed extract as a bio-stimulant on the increase on the yield and quality of tomato (Lycopersicon esculentum L.). World J. Environ. Biol. Sci. 8: 11-17.
Bilinska, O., Kulka, V., Samets, N. and Golod, R. (2021). The influence of the use of the drug Albit on the formation of the seed productivity of the pre-basic material of potatoes. UKR Black Sea Reg. Agric. Sci. 2 :71-79. doi:10.31521/2313-092X/2021-1(109)-1.
Biratu, W. (2018). Review on the effect of climate change on tomato (Solanum lycopersicon) production in Africa and mitigation strategies. J. Nat. Sci. Res. 8: 2225-0921.
Bulgari, R., Franzoni, G. and Ferrante, A. (2019). Bio-stimulants application in horticultural crops under abiotic stress conditions. Agronomy 9: doi:10.3390/agronomy9060306.
Calvo, P., Nelson, L. and Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant Soil 383: 3–41. doi:10.1007/s11104-014-2131-8.
Garrett, K. A., Nita, M., De Wolf, E. D., Esker, P. D., Gomez-Montano, L. and Sparks, A. H. (2016). Chapter 21-Plant pathogens as indicators of climate change. In: Climate Change, 2nd ed. (ed. Letcher, T.M.). ELS, Amsterdam, Netherlands. pp. 325–38. doi:10.1016/B978-0-444-63524-2.00021-X.
Gedeon, S., Ioannou, A., Balestrini, R., Fotopoulos, V. and Antoniou, C. (2022). Application of biostimulants in tomato plants (Solanum lycopersicum) to enhance plant growth and salt stress tolerance. Plants 11: doi:10.3390/plants11223082.
Habib-ur-Rahman, M., Ahmad, A., Raza, A., Hasnain, M. U., Alharby, H. F., Alzahrani, Y. M. Bamagoos, A. A., Hakeem, K. R., Ahmad, S., Nasim, W., Ali, S., Mansour, F. and El-Sabagh, A. (2022). Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 13: doi:10.3389/fpls.2022.925548.
Kalozoumis, T. M. (2023). Combining solid digestate with microorganisms and a bio-stimulant for a potentially enhanced quality of soilless organically grown tomato plants. Second cycle, A2E. Alnarp: SLU, Dept. of Plant Breeding (from 130101).
Kumar, A. and Verma, J. P. (2018). Does plant–microbe interaction confer stress tolerance in plants: A review. Microbiol. Res. 207: 41–52. doi:10.1016/j.micres.2017.11.004.
Mzibra, A., Aasfar, A., Benhima, R., Khouloud, M., Boulif, R., Douira, A., Bamouh, A. and Kadmiri, M, I. (2021). Bio-stimulants derived from Moroccan seaweeds: seed germination metabolomics and growth promotion of tomato plant. J. Plant Growth Regul. 40: 353-70. doi:10.1007/s00344-020-10104-5.
Selim, S., El Haddad, M., Nassef, M., Radwan, W. and Abu-Hussien, S. (2021). Promoting of abiotic stress–induced resistance using poly-β- hydroxybutyrate (PHB) by Rhizobium phaseoli in common bean plants. Arab U. J. Agric. Sci. 29: 277-92. doi:10.21608/ajs.2021.64758.1342.
Shabani, E., Ansari, N. A. and Fayezizadeh, M. R. (2023). Plant growth bio-stimulants of seaweed extract (Sargasum boveanum): Implications towards sustainable production of cucumber. Yuzuncu Yıl U. J. Agric. Sci. 33: 478-90. doi:10.29133/yyutbd.1288078.
Teka, T. A. (2013). Analysis of the effect of maturity stage on the postharvest biochemical quality characteristics of tomato (Lycopersicon esculentum Mill.) fruit. Int. Res. J. Pharm. Appl. Sci. 3: 180-86.
Tigist, M., Workneh, T. S. and Woldetsadik, K. (2013). Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Tech. 50: 477-86. doi:10.1007/s13197-011-0378-0.
Ullah, A., Ali, S., Khan, A., Shah, S. M., Amin, F., Ullah, A., Khan, S. and Ullah, Z. (2019). Influence of foliar application of bio-stimulants on growth, yield and chemical composition of tomato. Int. J. Biosci. 14: doi:10.12692/ijb/14.1.309-316.
Zhang, P., Zhang, H., Wu, G., Chen, X., Gruda, N., Li, X., Dong, J. and Duan, Z. (2021). Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Front. Plant Sci. 12: doi:10.3389/fpls.2021.736613.
Bilinska, O., Kulka, V., Samets, N. and Golod, R. (2021). The influence of the use of the drug Albit on the formation of the seed productivity of the pre-basic material of potatoes. UKR Black Sea Reg. Agric. Sci. 2 :71-79. doi:10.31521/2313-092X/2021-1(109)-1.
Biratu, W. (2018). Review on the effect of climate change on tomato (Solanum lycopersicon) production in Africa and mitigation strategies. J. Nat. Sci. Res. 8: 2225-0921.
Bulgari, R., Franzoni, G. and Ferrante, A. (2019). Bio-stimulants application in horticultural crops under abiotic stress conditions. Agronomy 9: doi:10.3390/agronomy9060306.
Calvo, P., Nelson, L. and Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant Soil 383: 3–41. doi:10.1007/s11104-014-2131-8.
Garrett, K. A., Nita, M., De Wolf, E. D., Esker, P. D., Gomez-Montano, L. and Sparks, A. H. (2016). Chapter 21-Plant pathogens as indicators of climate change. In: Climate Change, 2nd ed. (ed. Letcher, T.M.). ELS, Amsterdam, Netherlands. pp. 325–38. doi:10.1016/B978-0-444-63524-2.00021-X.
Gedeon, S., Ioannou, A., Balestrini, R., Fotopoulos, V. and Antoniou, C. (2022). Application of biostimulants in tomato plants (Solanum lycopersicum) to enhance plant growth and salt stress tolerance. Plants 11: doi:10.3390/plants11223082.
Habib-ur-Rahman, M., Ahmad, A., Raza, A., Hasnain, M. U., Alharby, H. F., Alzahrani, Y. M. Bamagoos, A. A., Hakeem, K. R., Ahmad, S., Nasim, W., Ali, S., Mansour, F. and El-Sabagh, A. (2022). Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 13: doi:10.3389/fpls.2022.925548.
Kalozoumis, T. M. (2023). Combining solid digestate with microorganisms and a bio-stimulant for a potentially enhanced quality of soilless organically grown tomato plants. Second cycle, A2E. Alnarp: SLU, Dept. of Plant Breeding (from 130101).
Kumar, A. and Verma, J. P. (2018). Does plant–microbe interaction confer stress tolerance in plants: A review. Microbiol. Res. 207: 41–52. doi:10.1016/j.micres.2017.11.004.
Mzibra, A., Aasfar, A., Benhima, R., Khouloud, M., Boulif, R., Douira, A., Bamouh, A. and Kadmiri, M, I. (2021). Bio-stimulants derived from Moroccan seaweeds: seed germination metabolomics and growth promotion of tomato plant. J. Plant Growth Regul. 40: 353-70. doi:10.1007/s00344-020-10104-5.
Selim, S., El Haddad, M., Nassef, M., Radwan, W. and Abu-Hussien, S. (2021). Promoting of abiotic stress–induced resistance using poly-β- hydroxybutyrate (PHB) by Rhizobium phaseoli in common bean plants. Arab U. J. Agric. Sci. 29: 277-92. doi:10.21608/ajs.2021.64758.1342.
Shabani, E., Ansari, N. A. and Fayezizadeh, M. R. (2023). Plant growth bio-stimulants of seaweed extract (Sargasum boveanum): Implications towards sustainable production of cucumber. Yuzuncu Yıl U. J. Agric. Sci. 33: 478-90. doi:10.29133/yyutbd.1288078.
Teka, T. A. (2013). Analysis of the effect of maturity stage on the postharvest biochemical quality characteristics of tomato (Lycopersicon esculentum Mill.) fruit. Int. Res. J. Pharm. Appl. Sci. 3: 180-86.
Tigist, M., Workneh, T. S. and Woldetsadik, K. (2013). Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Tech. 50: 477-86. doi:10.1007/s13197-011-0378-0.
Ullah, A., Ali, S., Khan, A., Shah, S. M., Amin, F., Ullah, A., Khan, S. and Ullah, Z. (2019). Influence of foliar application of bio-stimulants on growth, yield and chemical composition of tomato. Int. J. Biosci. 14: doi:10.12692/ijb/14.1.309-316.
Zhang, P., Zhang, H., Wu, G., Chen, X., Gruda, N., Li, X., Dong, J. and Duan, Z. (2021). Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Front. Plant Sci. 12: doi:10.3389/fpls.2021.736613.