Loading...

Yield and quality features of some rosemary (Rosmarinus officinalis L.) genotypes

Citation :- Yield and quality features of some rosemary (Rosmarinus officinalis L.) genotypes. Res. Crop. 25: 662-668
YUSUF SARI, AYSUN ÖZTÜRK, OKTAY İNCE, YALÇIN KAYA, NİHAL DİLEK SÜMER TÜRELİ, AHMET BİRCAN TINMAZ AND OYA KAÇAR ysfsari77@gmail.com
Address : Atatürk Horticultural Central Research Institute, 77100, Yalova, Turkey
Submitted Date : 28-09-2024
Accepted Date : 30-10-2024

Abstract

Rosemary has broad distribution in the world, especially in the Mediterranean region and naturally grows on the west and south coasts of Turkey. In this study, a total of 70 genotypes, with 58 local samples collected from different locations in Turkey and 12 foreign samples obtained from different countries located around the Mediterranean belt, were placed under morphological observation in 2021-2022 by creating an observation garden in the trial fields of Yalova Atatürk Horticultural Central Research Institute. As a result of the research, according to general averages for 2021 and 2022, among morphological and agronomic features, the plant height was 41.1 - 82.3 cm, green herb yield 268.2 - 1137.7 kg/ha, dry herb yield 66.2-110.6 kg/ha, dry leaf yield 51.9 - 71.5 kg/ha, and essential oil yield 0.2 - 2.9 ml/ha. Among quality features, the essential oil proportion was 0.4 - 4.8%, and phenolic compounds included rosmarinic acid (RA) 2.1 - 12.3 mg/g, carnosic acid (CA) 9.3 - 60.7 mg/g and carnosol (CAR) 1.3 - 4.9 mg/g. In conclusion, 9 rosemary genotypes identified with high green herb yield, dry leaf yield, phenolic compounds, essential oil proportion and essential oil quality are B2, B3, B5, B6, B8, B52, B62, B69 and B70, and recommended to include these genotypes in repeated yield trials.

Keywords

Dry leaf yield essential oil proportion green herb yield rosmarinic acid Rosmarinus officinalis L.

References

Amin, T., Naik, H. R. and Syed, Z. H. (2017). Chemotyping the essential oil in different rosemary (Rosmarinus officinalis L.) plants grown in Kashmir valley. Biosci. Biotechnol. Res. Asıa 14: 1025-31. doi:10.13005/bbra/2537.
Baydar, H. (2013). Science and technology of medicinal and aromatic plants. Süleyman Demirel University Faculty of Agriculture Publication 51:192-94.
Bravo, E. M., Culebras, G., Ortiz de E., Vioque, R. S., Sestelo, M. F. and Panelvar, D. H. (2022). Variability of essential oil in cultivated populations of Rosmarinus officinalis L. in Spain. Euphytica 218: doi:10.1007/s10681-022-03020-0.
Carruba, A., Abbate, L., Sarno, M., Sunseri, F., Mauceri, A., Lupini, A. and Mercati, F. (2020). Characterization of sicilian rosemary (Rosmarinus officinalis L.) germplasm through a multidisciplinary approach. Planta 251: doi:10.1007/s00425-019-03327-8.
Hamidpour, R., Hamidpour, S. and Elias, G. (2017). Rosmarinus officinalis (Rosemary): A novel therapeutic agent for antioxidant, antimicrobial, anticancer, antidiabetic, antidepressant, neuroprotective, anti- inflammatory, and anti-obesity treatment. Biomed. J. Sci. Tech. Res. 1: 1098-1103. doi:10.26717/BJSTR.2017.01.000371.
Katar, N., Katar, D., Temel, R., Karakurt, S., Bolatkıran, İ., Yıldız, E. and Soltanbeigi, A. (2019). The effect of different harvest dates on the yield and quality properties of rosemary (Rosmarinus officinalis L.) plant. Biol. Divers. Conserv. 12: 07-13. doi:10.5505/biodicon.2019.29292.
Macedo, L. M., Santoz, E. M., Militao L., Tundisi, L. L., Ataide, J. A., Souto, E. B. and Mazzola, P. G. (2020). Rosemary (Rosmarinus officinalis L., syn salvia Rosmarinus spenn.) and its topical applications: A Review. Plants 9: doi:10.3390/plants 9050651.
Marakçı, O. (2022). The effects of different planting densities and diurnal variability on yield and quality traits of rosemary (Rosmarinus officinalis L.) in Siirt ecological conditions. Master's Thesis, Siirt University. pp: 72.
Mercati, F., Fontana, I., Gristina, A. S., Martorana, A., El Nagar, M., De Michele, R., Fici, S. and Carimi, F. (2019). Transcriptome analysis and codominant markers development in coper, a drought tolerant orphan crop with medicinal value. Sci Rep. 9: 2045-322.  doi:10.1038/s41598-019-46613-x.
Nunziata, A., De Benedetti, L., Marchioni, I. and Cervelli, C. (2019). High resolution melting profiles of 364 genotypes of Salvia rosmarinus in 16 microsatellite loci. Ecd. Evol.  9: 3728-39. doi:10.17632/bmxm4vvxdp.1.
Pomi, L, F., Papa, V., Borgia, F., Vaccaro, M., Allegra, A., Cicero, N. and Gangemi, S. (2023). Rosmarinus officinalis and skin: Antioxidant activity and possible therapeutical role in cutaneous diseases. Antioxidants 12: doi:10.3390/antiox12030680.
Richheimer, S. L., Bernart, M. W., King, G. A., Kent, M. C. and Bailey, D. T. (1996). Antioxidant activity of lipid soluble phenolic diterpenes from rosemary. J. 73: 507-14. doi:10.1007/BF02523927.
Rotblatt, M. (2000). Herbal medicine: Expanded commission E monographs. Ann. Intern. Med. 133: 487.
Salem, M. A., Radwan, R. A., Mostafa, E. S., Alseekin, S., Fernie, A, R. and Ezzat, S, M. (2020). Using on UPLC/MS- based untargeted metabolomics approach for assessing the antioxidant capacity and anti-aging potential of selected herbs. RSC Adv. 10: 31511-24.    doi:10.1039/d0ra06047j.
Wichtl, M. (1971). Die pharmakogostich-chemisehe ntersuchung und wertbestimmung von drogen und galenischen präparaten, methoden der analyse in der chemie band 12. Frankfurt and Main.
Yıldıztekin, M., Ulusoy, H. and Tuna, A. L. (2019). Cultivation and sustainable development of medicinal and aromatic plants in Turkey. In 4th International Symposium on Innovative Approaches in Engineering and Natura Sciences 4: 481-84.


Global Footprints