Chen, J., Chen, R., Chen, W., Chen, X., Gao, S., Li, Q., Xiao, L., Xiao, Y., Yu, J., Yu, L., Zhang, H. and Zhang, L. (2024). The ERF transcription factor LTF1 activates DIR1 to control stereoselective synthesis of antiviral lignans and stress defense in Isatis indigotica roots. Acta Pharm. Sin. B. 14: 405–20. doi:10.1016/j.apsb.2023.08.011.
Corbin, C., Drouet, S., Mateljak, I., Markulin, L., Decourtil, C., Renouard, S., Lopez, T., Doussot, J., Lamblin, F., Auguin, D., Lainé, E., Fuss, E. and Hano, C. (2017). Functional characterization of the pinoresinol–lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta 246: 405-20. doi:10.1007/ s00425-017-2701-0.
Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D. and Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31: 3784–88. doi:10.1093/nar/gkg563.
Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N. and Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 40: 1178–86. doi:10.1093/nar/gkr944.
Hano, C. F., Dinkova-Kostova, A. T., Davin, L. B., Cort, J. R. and Lewis, N. G. (2021). Editorial: Lignans: insights into their biosynthesis, metabolic engineering, analytical methods and health benefits. Front. Plant Sci. 11: 2020–22. doi:10.3389/fpls.2020.630327.
Harini, K., Kihara, D. and Michael Gromiha, M. (2023). PDA-Pred: Predicting the binding affinity of protein-DNA complexes using machine learning techniques and structural features. Methods 213:10–17. doi:10.1016/j.ymeth.2023.03.002.
Hemmati, S., Heimendahl, C. B. I. V., Klaes, M., Alfermann, A. W., Schmidt, T. J. and Fuss, E. (2010). Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Med. 76: 928–34. doi:10.1055/s-0030-1250036.
Hsiao, A. S. (2022). Plant protein disorder: spatial regulation, broad specificity, switch of signaling and physiological status. Front. Plant Sci. 13: 1–6. doi:10.3389/fpls.2022.904446.
Iserte, J. A., Lazar, T., Tosatto, S. C. E., Tompa, P. and Marino-Buslje, C. (2020). Chasing coevolutionary signals in intrinsically disordered proteins complexes. Sci. Rep. 10: 1–9. doi:10.1038/s41598-020-74791-6.
Kloczkowski, A., Ting, K. L., Jernigan, R. L. and Garnier, J. (2002). Protein secondary structure prediction based on the GOR algorithm incorporating multiple sequence alignment information. Polymer (Guildf). 43: 441–49. doi:10.1016/s0032-3861(01)00425-6.
Lundström, O. (2023). Intrinsic disorder and tandem repeats - match made in evolution : Computational studies of molecular evolution. Doctoral Thesis in Biochemistry towards Bioinformatics at Stockholm University, Sweden. ISBN PDF 978-91-8014-560-2.
Maiti, S., Singh, A., Maji, T., Saibo, N. V. and De, S. (2024). Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr. Res. Struct. Biol. 7: doi:10.1016/j.crstbi.2024.100138.
Min, T., Kasahara, H., Bedgar, D. L., Youn, B., Lawrence, P. K., Gang, D. R., Halls, S. C., Park, H. J., Hilsenbeck, J. L., Davin, L. B., Lewis, N. G. and Kang, C. H. (2003). Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J. Biol. Chem. 278: 50714–23. doi:10.1074/jbc.M308493200.
Musselman, C.A. and Kutateladze, T.G. (2021). Characterization of functional disordered regions within chromatin-associated proteins. iScience 24: doi:10.1016/j.isci.2021.102070.
Pietrosemoli, N., García-Martín, J. A., Solano, R. and Pazos, F. (2013). Genome-wide analysis of protein disorder in arabidopsis thaliana: implications for plant environmental adaptation. PLoS One 8. doi:10.1371/journal.pone.0055524.
Pritišanac, I., Alderson, T. R., Kolarić, Đ., Zarin, T., Xie, S., Lu, A., Alam, A., Maqsood, A., Youn, J. Y., Forman-Kay, J. D. and Moses, A. M. (2024). A functional map of the human intrinsically disordered proteome. Cold Spring Harbor Laboratory. bioRxiv: The reprint Server for Biology. doi:10.1101/2024.03.15.585291.
Renouard, S., Tribalatc, M. A., Lamblin, F., Mongelard, G., Fliniaux, O., Corbin, C., Marosevic, D., Pilard, S., Demailly, H., Gutierrez, L., Hano, C., Mesnard, F. and Lainé, E. (2014). RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: Consequences on lignans and neolignans accumulation. J. Plant Physiol. 171: 1372–77. doi:10.1016/j.jplph.2014.06.005.
Ridhi, J., Gurseen, R., Harpreet, S. and Gurmeen, R. (2023). Intrinsic disordered nature and prediction of the secondary structure in wheat dehydrins. Res. J. Biotechnol. 18: 8–13. doi:10.25303/1805rjbt08013.
Salladini, E., Jørgensen, M. L. M., Theisen, F. F. and Skriver, K. (2020). Intrinsic disorder in plant transcription factor systems: Functional implications. Int. J. Mol. Sci. 21: 1–35. doi:10.3390/ijms21249755.
Schuster, B. S., Dignon, G. L., Tang, W. S., Kelley, F. M., Ranganath, A. K., Jahnke, C. N., Simpkins, A. G., Regy, R. M., Hammer, D. A., Good, M. C. and Mittal, J. (2020). Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl. Acad. Sci. U. S. A. 117. doi:10.1073/pnas.2000223117.
Sulatskaya, A. I., Kosolapova, A. O., Bobylev, A. G., Belousov, M. V., Antonets, K. S., Sulatsky, M. I., Kuznetsova, I. M., Turoverov, K. K., Stepanenko, O. V. and Nizhnikov, A. A. (2021). β-Barrels and amyloids: structural transitions, biological functions, and pathogenesis. Int. J. Mol. Sci. 22: 1–27. doi:10.3390/ijms222111316.
Sun, X., Jones, W. T. and Rikkerink, E. H. A., (2012). GRAS proteins: The versatile roles of intrinsically disordered proteins in plant signalling. Biochem. J. 442: 1–12. doi:10. 1042/BJ20111766.
Sun, X., Rikkerink, E. H. A., Jones, W. T. and Uversky, V. N. (2013). Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell. 25: 38-55. doi:10.1105/tpc.112.106062.
Szlachtowska, Z. and Rurek, M. (2023). Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. Front. Plant Sci. 14: 1–19. doi:10.3389/fpls.2023.1213188.
Tomanek, L. (2015). Proteomic responses to environmentally induced oxidative stress. J. Exp. Biol. 218: 1867–79. doi:10.1242/jeb.116475.
Trivedi, R. and Nagarajaram, H. A. (2022). Intrinsically disordered proteins: an overview. Int. J. Mol. Sci. 23: 1–30. doi:10.3390/ijms232214050.
Uversky, V. N. (2013). A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Sci. 22: 693-724. doi:10.1002/pro.2261.
Uversky, V. N. (2019). Intrinsically disordered proteins and their “Mysterious” (meta) physics. Front. Phys. 7: 8–23. doi:10.3389/fphy.2019.00010.
Wankhede, D. P., Biswas, D. K., Rajkumar, S. and Sinha, A. K. (2013). Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinol reductase from Podophyllum hexandrum. Protoplasma 250: 1239–49. doi:10.1007/ s00709-013-0505-z.
Xiao, Y., Ji, Q., Gao, S., Tan, H., Chen, R., Li, Q., Chen, J., Yang, Y., Zhang, L., Wang, Z., Chen, W. and Hu, Z. (2015). Combined transcriptome and metabolite profling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica. J. Exp. Bot. 66: 6259–71. doi:10.1093/jxb/erv333.
Xiao, Y., Shao, K., Zhou, J., Wang, L., Ma, X., Wu, D., Yang, Y., Chen, J., Feng, J., Qiu, S., Lv, Z., Zhang, L., Zhang, P. and Chen, W. (2021). Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases. Nat. Commun. 12: 1–11. doi:10.1038/ s41467-021-23095-y.
Xue, B., Brown, C. J., Dunker, A. K. and Uversky, V. N. (2013). Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta - Proteins Proteomics. 1834: 725–38. doi:10.1016/j.bbapap.2013.01.012.
Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K. and Uversky, V. N. (2011). PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804: 996-1010. doi:10.1016/j.bbapap.2010.01.011.
Yelnazarkyzy, R., Baitelenova, A., Zargar, M., Stybayev, G., Cai, S. Q., Sniazhynski, A. and Kipshakbayeva, G. (2024). Impact of growth conditions on the quality of oil and fiber in various varieties of flax (Linum usitatissimum). Res. on Crops 25: 425-33.
Yousefzadi, M., Sharifi, M., Behmanesh, M., Ghasempour, A., Moyano, E. and Palazon, J. (2012). The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture. Plant Physiol. Biochem. 56: 41–46. doi:10.1016/j.plaphy.2012.04.010.
Zhang, H., Zhao, Y. and Zhu, J. K. (2020). Thriving under Stress: How plants balance growth and the stress response. Dev. Cell 55: 529–43. doi:10.1016/j.devcel.2020.10.012.
Corbin, C., Drouet, S., Mateljak, I., Markulin, L., Decourtil, C., Renouard, S., Lopez, T., Doussot, J., Lamblin, F., Auguin, D., Lainé, E., Fuss, E. and Hano, C. (2017). Functional characterization of the pinoresinol–lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta 246: 405-20. doi:10.1007/ s00425-017-2701-0.
Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D. and Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31: 3784–88. doi:10.1093/nar/gkg563.
Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N. and Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 40: 1178–86. doi:10.1093/nar/gkr944.
Hano, C. F., Dinkova-Kostova, A. T., Davin, L. B., Cort, J. R. and Lewis, N. G. (2021). Editorial: Lignans: insights into their biosynthesis, metabolic engineering, analytical methods and health benefits. Front. Plant Sci. 11: 2020–22. doi:10.3389/fpls.2020.630327.
Harini, K., Kihara, D. and Michael Gromiha, M. (2023). PDA-Pred: Predicting the binding affinity of protein-DNA complexes using machine learning techniques and structural features. Methods 213:10–17. doi:10.1016/j.ymeth.2023.03.002.
Hemmati, S., Heimendahl, C. B. I. V., Klaes, M., Alfermann, A. W., Schmidt, T. J. and Fuss, E. (2010). Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Med. 76: 928–34. doi:10.1055/s-0030-1250036.
Hsiao, A. S. (2022). Plant protein disorder: spatial regulation, broad specificity, switch of signaling and physiological status. Front. Plant Sci. 13: 1–6. doi:10.3389/fpls.2022.904446.
Iserte, J. A., Lazar, T., Tosatto, S. C. E., Tompa, P. and Marino-Buslje, C. (2020). Chasing coevolutionary signals in intrinsically disordered proteins complexes. Sci. Rep. 10: 1–9. doi:10.1038/s41598-020-74791-6.
Kloczkowski, A., Ting, K. L., Jernigan, R. L. and Garnier, J. (2002). Protein secondary structure prediction based on the GOR algorithm incorporating multiple sequence alignment information. Polymer (Guildf). 43: 441–49. doi:10.1016/s0032-3861(01)00425-6.
Lundström, O. (2023). Intrinsic disorder and tandem repeats - match made in evolution : Computational studies of molecular evolution. Doctoral Thesis in Biochemistry towards Bioinformatics at Stockholm University, Sweden. ISBN PDF 978-91-8014-560-2.
Maiti, S., Singh, A., Maji, T., Saibo, N. V. and De, S. (2024). Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr. Res. Struct. Biol. 7: doi:10.1016/j.crstbi.2024.100138.
Min, T., Kasahara, H., Bedgar, D. L., Youn, B., Lawrence, P. K., Gang, D. R., Halls, S. C., Park, H. J., Hilsenbeck, J. L., Davin, L. B., Lewis, N. G. and Kang, C. H. (2003). Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J. Biol. Chem. 278: 50714–23. doi:10.1074/jbc.M308493200.
Musselman, C.A. and Kutateladze, T.G. (2021). Characterization of functional disordered regions within chromatin-associated proteins. iScience 24: doi:10.1016/j.isci.2021.102070.
Pietrosemoli, N., García-Martín, J. A., Solano, R. and Pazos, F. (2013). Genome-wide analysis of protein disorder in arabidopsis thaliana: implications for plant environmental adaptation. PLoS One 8. doi:10.1371/journal.pone.0055524.
Pritišanac, I., Alderson, T. R., Kolarić, Đ., Zarin, T., Xie, S., Lu, A., Alam, A., Maqsood, A., Youn, J. Y., Forman-Kay, J. D. and Moses, A. M. (2024). A functional map of the human intrinsically disordered proteome. Cold Spring Harbor Laboratory. bioRxiv: The reprint Server for Biology. doi:10.1101/2024.03.15.585291.
Renouard, S., Tribalatc, M. A., Lamblin, F., Mongelard, G., Fliniaux, O., Corbin, C., Marosevic, D., Pilard, S., Demailly, H., Gutierrez, L., Hano, C., Mesnard, F. and Lainé, E. (2014). RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: Consequences on lignans and neolignans accumulation. J. Plant Physiol. 171: 1372–77. doi:10.1016/j.jplph.2014.06.005.
Ridhi, J., Gurseen, R., Harpreet, S. and Gurmeen, R. (2023). Intrinsic disordered nature and prediction of the secondary structure in wheat dehydrins. Res. J. Biotechnol. 18: 8–13. doi:10.25303/1805rjbt08013.
Salladini, E., Jørgensen, M. L. M., Theisen, F. F. and Skriver, K. (2020). Intrinsic disorder in plant transcription factor systems: Functional implications. Int. J. Mol. Sci. 21: 1–35. doi:10.3390/ijms21249755.
Schuster, B. S., Dignon, G. L., Tang, W. S., Kelley, F. M., Ranganath, A. K., Jahnke, C. N., Simpkins, A. G., Regy, R. M., Hammer, D. A., Good, M. C. and Mittal, J. (2020). Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl. Acad. Sci. U. S. A. 117. doi:10.1073/pnas.2000223117.
Sulatskaya, A. I., Kosolapova, A. O., Bobylev, A. G., Belousov, M. V., Antonets, K. S., Sulatsky, M. I., Kuznetsova, I. M., Turoverov, K. K., Stepanenko, O. V. and Nizhnikov, A. A. (2021). β-Barrels and amyloids: structural transitions, biological functions, and pathogenesis. Int. J. Mol. Sci. 22: 1–27. doi:10.3390/ijms222111316.
Sun, X., Jones, W. T. and Rikkerink, E. H. A., (2012). GRAS proteins: The versatile roles of intrinsically disordered proteins in plant signalling. Biochem. J. 442: 1–12. doi:10. 1042/BJ20111766.
Sun, X., Rikkerink, E. H. A., Jones, W. T. and Uversky, V. N. (2013). Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell. 25: 38-55. doi:10.1105/tpc.112.106062.
Szlachtowska, Z. and Rurek, M. (2023). Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. Front. Plant Sci. 14: 1–19. doi:10.3389/fpls.2023.1213188.
Tomanek, L. (2015). Proteomic responses to environmentally induced oxidative stress. J. Exp. Biol. 218: 1867–79. doi:10.1242/jeb.116475.
Trivedi, R. and Nagarajaram, H. A. (2022). Intrinsically disordered proteins: an overview. Int. J. Mol. Sci. 23: 1–30. doi:10.3390/ijms232214050.
Uversky, V. N. (2013). A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Sci. 22: 693-724. doi:10.1002/pro.2261.
Uversky, V. N. (2019). Intrinsically disordered proteins and their “Mysterious” (meta) physics. Front. Phys. 7: 8–23. doi:10.3389/fphy.2019.00010.
Wankhede, D. P., Biswas, D. K., Rajkumar, S. and Sinha, A. K. (2013). Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinol reductase from Podophyllum hexandrum. Protoplasma 250: 1239–49. doi:10.1007/ s00709-013-0505-z.
Xiao, Y., Ji, Q., Gao, S., Tan, H., Chen, R., Li, Q., Chen, J., Yang, Y., Zhang, L., Wang, Z., Chen, W. and Hu, Z. (2015). Combined transcriptome and metabolite profling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica. J. Exp. Bot. 66: 6259–71. doi:10.1093/jxb/erv333.
Xiao, Y., Shao, K., Zhou, J., Wang, L., Ma, X., Wu, D., Yang, Y., Chen, J., Feng, J., Qiu, S., Lv, Z., Zhang, L., Zhang, P. and Chen, W. (2021). Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases. Nat. Commun. 12: 1–11. doi:10.1038/ s41467-021-23095-y.
Xue, B., Brown, C. J., Dunker, A. K. and Uversky, V. N. (2013). Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta - Proteins Proteomics. 1834: 725–38. doi:10.1016/j.bbapap.2013.01.012.
Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K. and Uversky, V. N. (2011). PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804: 996-1010. doi:10.1016/j.bbapap.2010.01.011.
Yelnazarkyzy, R., Baitelenova, A., Zargar, M., Stybayev, G., Cai, S. Q., Sniazhynski, A. and Kipshakbayeva, G. (2024). Impact of growth conditions on the quality of oil and fiber in various varieties of flax (Linum usitatissimum). Res. on Crops 25: 425-33.
Yousefzadi, M., Sharifi, M., Behmanesh, M., Ghasempour, A., Moyano, E. and Palazon, J. (2012). The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture. Plant Physiol. Biochem. 56: 41–46. doi:10.1016/j.plaphy.2012.04.010.
Zhang, H., Zhao, Y. and Zhu, J. K. (2020). Thriving under Stress: How plants balance growth and the stress response. Dev. Cell 55: 529–43. doi:10.1016/j.devcel.2020.10.012.