Loading...

Aquaponic growth of basil (Ocimum basilicum) with Mozambique tilapia (Oreochromis mossambicus) in standard substrate


Citation :- Aquaponic growth of basil (Ocimum basilicum) with Mozambique tilapia (Oreochromis mossambicus) in standard substrate. Res. Crop. 25: 676-680
GAVIN GELDENHUYS gavin.geldenhuys@ul.ac.za
Address : Aquaculture Research Unit, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
Submitted Date : 19-09-2024
Accepted Date : 15-10-2024

Abstract

Aquaponics, the integrated production of fish and hydroponic crops in a recirculating system, is an intensive cultivation method in which metabolic fish wastes fertilize plants. Basil (Ocimum basilicum L.) is one of the most sought-after herbs in the market used in medicine. Although basil is highly sought after for its properties, there is limited information about its behaviour in aquaponics. Therefore, in 2024 (from July to August), this study was undertaken at the University of Limpopo for 50 days to investigate the production of basil (Ocimum basilicum L.) under a recirculating aquaponic system. This study aimed to assess the growth and development of this plant under aquaponic conditions. Three single and equal aquaponic systems were used, each consisting of a pond, a clarifier, three biofilters, and a hydroponic bed. These elements are interconnected with PVC pipes. Each pond was injected with air through aerator stones. Randomly, ten basils (O. basilicum), which were obtained from a commercial nursery (about 90 days old), were placed in each aquaponic system. A total of 30 tilapia specimens (O. mossambicus), ten fish per pound, were used. The results indicate a positive growth rate for basil with a strong coefficient of determination (R2= 0.95) during the experiment. On the other hand, the PCA results (. F1= 72.99%, and F2= 23.66%) showed two groups of the growing stage, which refers to different plant growth rates and temperatures. In conclusion, the basil exhibited good productivity, indicating efficient nutrient assimilation in this system. Therefore, the evaluated basil is well-suited for these conditions and can be utilized as part of the biological filters in aquaponic systems with tilapia production.

Keywords

Aquaponic system growth rate Ocimum basilicum

References

Albadwawi, M. A. O. K., Ahmed, Z. F. R., Kurup, S. S., Alyafei, M. A. and Jaleel, A. A (2022). Comparative evaluation of aquaponic and soil systems on yield and antioxidant levels in basil, an important food plant in Lamiaceae. Agronomy 12: doi:10.3390/agronomy12123007.
Al-Hafedh, Y., Alam, A. and Salaheldin, M. (2008). Food production and water conservation in a recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. J. World Aquac. Soc. 39: 510-20. doi:10.1111/j.1749- 7345.2008.00181.x.
AlShrouf, A. (2017). Hydroponics, aeroponic and aquaponic as compared with conventional farming. Am. Acad. Sci. Res. J. Eng. Technol. Sci.  27: 247–55.
Blidariu, F. and Grozea, A. (2011). Increasing the economic efficiency and sustainability of indoor fish farming by means of aquaponics: Review. Anim. Sci. Biotechnol. 44: 1-8.
Dawson, G. (2008). Easy interpretation of biostatistics: The vital link to applying evidence in medical decisions. Saunders, USA.
Espinosa-Moya, A., Álvarez-González, A., Albertos-Alpuche, P., Guzmán-Mendoza, R. and Martínez-Yáñez, R. (2018). Growth and development of herbaceous plants in aquaponic systems. Acta Universitaria. 28: 1-8. doi:10.15174/au.2018.1387.
Hatfield, J. L. and Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10: 4-10.  doi:10.1016/j.wace.2015.08.001.
Iannacone, J. and Alvariño, L. (2007). Ecotoxicidad acuática de dos colorantes y de tres antiparasitarios de importancia en acuicultura en Daphnia magna. Ecol. Apl. 6: 101-10.
Knaus, U., Hübner, D. H. D., Küchenmeister, C., Appelbaum, S., Iten, W. and Palm, H. W. (2024). Aquaponic growth of basil (Ocimum basilicum) with African catfish (Clarias gariepinus) in standard substrate combined with a Humicacid Fiber-Substrate (HFS). Sci Rep. 14: doi:10.1038/s41598-024-68361-3.
Makri, O. and Kintzios, S. (2007). Ocimum sp. (Basil): botany, cultivation, pharmaceutical properties and biotechnology. J. Herbs, Spices Med. Pl. 13: 123–50. doi:10.1300/ J044v13n03_10.
Mangmang, J. S., Deaker, R. and Rogers, G. (2016). Inoculation effect of Azospirillum brasilense on basil grown under aquaponics production system. Org. Agric. 6: 65–74. doi:10.1007/s13165-015-0115-5.
Mourantian, A., Aslanidou, M., Mente, E., Katsoulas, N. and Levizou, E. (2023). Basil functional and growth responses when cultivated via different aquaponic and hydroponics systems. Peer J. 11: doi:10.7717/peerj.15664.
Pérez-Rostro, C., Hernández-Vergara, M. and Ronzón-Ortega, M. (2012). Producción hidropónica y acuapónica de albahaca (Ocimum asilicum) y langostino malayo (Macrobrachium rosenbergii). Trop. Subtrop. Agroecosystems 15: S63-S71.
Rakocy, J. R., Masser, M. P. and Losordo, T. M. (2010). Aquaponics: Integrating fish and plant culture. Recirculating Aquaculture Tank Production Systems. USA. https://extension.okstate.edu/fact-sheets/
Ramírez, D., Sabogal, D., Jimenez, P. and Hurtado, H. (2008). La acua¬ponía: una alternativa orientada al desarrollo sostenible. Revista Facultad de Ciencias Básicas 4: 32-51. doi:10.18359/RFCB.2230.
Rodgers, D., Won, E., Timmons, M. B. and Mattson, N. (2022). Complementary nutrients in decoupled aquaponics enhance basil performance. Horticulturae   8:  doi:10. 3390/horticulturae8020111.
Roosta, H. R. (2014). Comparison of the vegetative growth, eco-physiological characteristics and mineral nutrient content of basil plants in different irrigation ratios of hydroponic: Aquaponic solutions. J. Plant Nutr. 37: 1782–1803.  doi:10.1080/01904167.2014.890220.
Zhang, S., Li, G., Wu, H., Liu, H., Yao, Y., Tao, L. and Liu, H. (2011). An integrated recirculating aquaculture system (RAS) for land-based fish farming: the effects on water quality and fish production. Aquacult. Eng. 45: 93-102. doi:10.1016/j.aquaeng.2011.08.001.
 

Global Footprints