Loading...

Influence of irrigation intervals on essential nutrient content in okra (Abelmoschus esculentus) seeds

Citation :- Influence of irrigation intervals on essential nutrient content in okra (Abelmoschus esculentus) seeds. Res. Crop. 25: 618-625
NDIVHUHO MUTSHEKWA, MABOKO S. MPHOSI AND HAPPY BANGO mutshekwan@gmail.com
Address : University of Limpopo, Green Biotechnologies Research Centre of Excellence, Private Bag X1106, Sovenga 0727, South Africa
Submitted Date : 21-08-2024
Accepted Date : 15-10-2024

Abstract

The influence of irrigation intervals on the accumulation of essential nutrients in okra seeds, especially those intended for coffee production, has not been thoroughly documented. This study aimed to investigate the effects of irrigation intervals on essential nutrient levels in okra seeds. By exploring how different irrigation schedules impact nutrient content, this research aims to optimize water use and enhance seed quality to meet the growing demand for nutrient-dense food products. The present study was conducted during late summer (December-January) 2022 and validated in 2023 at the Green Biotechnologies Research Centre of Excellence (GBRCE), University of Limpopo, Limpopo Province, South Africa (23°53'10"S, 29°44'15"E). Okra seedlings were subjected to irrigation intervals of 2, 4, 6, 8, 10, 12, and 14 days, with each interval replicated 10 times. Each seedling received 2,000 mL of tap water per irrigation. At 59 days after transplanting, pods were harvested and shelled, with seed samples prepared for the determination of malnutrition essential element tests. Calcium, K, Mg, and P versus irrigation interval exhibited quadratic relations with the model explained by 80, 78, 79, and 77% associations, respectively. Similarly, Cu, Fe, Na, Mn, and Zn versus irrigation interval exhibited quadratic relations, with the model explained by 71, 86, 79, 81, and 68% associations, respectively. Using x = −b1/2b2 relation, the average optimal irrigation intervals for macro and micronutrient elements were 9 and 8 days, respectively, with the average suggesting that the Day-8 irrigation interval was suitable for improving malnutrition essential elements of okra seeds under field conditions. 

Keywords

Climate change coffee drought-tolerant malnutrition okra water scarcity

References

Abd El-Kader, A. A., Shaaban, S. M. and Abd El-Fattah, M. S. (2010). Effect of irrigation levels and organic compost on okra plants (Abelmoschus esculentus L) grown in sandy calcareous soil. ABJNA 1: 225-31.
Adeogun, E. O. (2016). Yield response of okra to irrigation frequency and amount in a sprinkler irrigation system. Cont. J. Agric. Sci. 10: 24-31.
Agbemafle, R., Owusu-sekyere, J. D. and Bart-plange, A. (2015). Effect of deficit irrigation and storage on the nutritional composition of tomato (Lycopersicon esculentum Mill. cv. Pectomech). Croatian J. Food Technol. Biotechnol. Nutri. 10: 59-65.
Akubugwo, I. E., Obasi, N. A and Ginika, S. C. (2007). Nutritional potential of the leaves and seeds of black nightshade Solanum nigrum L. var virginicum from Afikpo Nigeria. Pak. J. Nutr. 6: 323-26.
Barkatullah, M., Akhtar, N., Ibrar, M. and Rauf, A. (2012). Effect of drought on the morphological and mineral composition of Abelmoschus esculentus. Middle-East J. Med. Plant. Res. 1: 59-62.
Besada, H. and Werner, K. (2015). An assessment of the effects of Africa's water crisis on food security and management. Int. J. Water Resour. Dev. 31: 120-33. 
Cole, J. C., Smith, M. W., Penn, C. J., Cheary, B. S. and Conaghan, K. J. (2016). Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci. Hort. 211: 420-30. doi:10.3390/horticulturae4010003.
Dupont. (2015). Global food security index special report: The role of innovation in meeting food security challenges. U. S. A.
Ekinci, M., Ors, S., Yildirim, E., Dursun, A., Turan, M., Sahin, U. and Kul, R. (2020). Monitoring some antioxidant enzymes and physiological indices of chard exposed to nitric oxide under drought stress. Rus. J. Plant. Physiol. 67: 740-49.
El-Sahookie, M. M., Alfalahi, A. O. and Almehemidi, A. F. (2009). Crop and soil management and breeding for drought tolerance. J. Agric. Sci. 40: 1-28.
Ghannad, M., Madani, H. and Darvishi, H. H. (2014). Effect of different sowing times, irrigation intervals and sowing methods on okra (Abelmoschus esculentus L. Moench). Int. J. Farm. Allied Sci. 3: 683-89.
Gomez, K. A. and Gomez, A. A. (1984). Statistical procedures for agricultural research. Wiley:    New York, U.S.A. 
Gulen, H. and Eris, A. (2004). Effect of heat stress on peroxide activity and total protein in strawberry plants. Plant. Sci. 166: 739-44. 
Jones, J. B. and Case, V. W. (1990). Sampling, handling and analyzing plant tissue samples. In: Westerman, R.L. (Ed.), Soil Testing and Plant Analysis. Third edition, Soil Sci. Soc. Ame. Book Series No. 3, Madison, Wisconsin. pp. 389-427.
Kamran, M., Zaffar, M., Aasma, P., Li, H., Muhammad, R., Saqib, B., Adnan, M., Abbas, G. H., Xue, B. and Umeed, A. (2020). Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J. Plant Growth Regul. 39: 266-81.
Kanton, R. A. L., Abbey, L. and Gbene, R. H. (2008). Irrigation schedule affects onion (Allium cepa L) growth, development and yield. J. Veg. Prod. 9: 3-11.
Kumar, S., Dagnoko, S., Haougui, A., Ratnadass, A., Pasternak, D. and Kouame, C. (2010). Okra (Abelmoschus spp.) in West and Central Africa: potential and progress on its improvement. Afr. J. Agric. Res. 5: 3590-98.
Liu, D. L., An, M., Johnson, I. R. and Lovett, J. V. (2003). Mathematical modelling of allelopathy. III. A model for curve-fitting allelochemical dose responses. Nonl. Biol. Tox. Med. 1: 37-50. doi:10.1080/15401420390844456.
Liu, Y., Qi, J., Luo, J., Qin, W., Luo, Q., Zhang, Q., Wu, D., Lin, D., Li, S., Dong, H., Chen, D. and Chen, H. (2019). Okra in food field: Nutritional value, health benefits and effects of processing methods on quality. Food Rev. Int. 37: 1-24.
Mabotja, T. C. (2018). Interactive effects of irrigation interval and planting density on vegetative yield and chemical composition of nightshade (Solanum retroflexum) in Limpopo Province, South Africa. Green Biotechnologies Research Centre for Excellence. University of Limpopo, South Africa.
Mashela, P. W. (2015). Integrated drip irrigation system: funding protocol to water research commission, South Africa. Green Biotechnologies Research Centre
for Excellence. University of Limpopo, South Africa. 
Mashela, P. W., De Waele, D., Dube, Z. P., Khosa, M. C., Pofu, K. M., Tefu, G., Daneel M. S. and Fourie, H. (2016). Alternative nematode management strategies. In: Fourie, H.V.S. Spaulls, M. S. Daneel, D. De Waele, Editor. Nematology in South Africa: a view from the 21st century. Switzerland: Springer International Publishers; pp. 153-83. doi:10.1007/978-3-319-44210-5_7. 
Mayer, J. E., Pfeiffer, W. H. and Beyer, P. (2008). Biofortification crops to alleviate micronutrient malnutrition. Plant. Biol. 11: 166-70.
Moore, A., Hines, S., Brown, B., Falen, C., Marti, M.de H., Chahine, M., Norell, R., Ippolito, J., Parkinson, S. and Satterwhite, M. (2014). Soil-plant nutrient interactions on manure-enriched calcareous soils. Agric. J. 106: 73-80.
Mumtaz, M. Z., Saqib, M., Abbas, G., Akhtar, J. and Ul-Qamar, Z. (2020). Drought stress impairs grain yield and quality of rice genotypes by impaired photosynthetic attributes and K nutrition. Rice Sci.  27: 5-9.
Mutshekwa, N., Mashela, P. W. and Mphosi, M. S. (2019). Effects of irrigation interval on vegetative growth and productivity of okra (Abelmoschus esculentus). Res. Crop. 20: 748-52. doi:10.31830/2348-7542.2019.111.        
Olaniyi, J. O. and Akanbi, W. B. (2008). Effects of cultural practices on mineral compositions of cassava peel compost and its effects on the performance of cabbage (Brassica Oleracea L.). J. Appl. Biosci. 8: 272-79.
Pandey, A., Chowdary, V. M. and Mal, B. C. (2007). Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resour. Manag. 21: 729-46.
Pascale, S. D., Paradiso, R. and Barbieri, G. (2001). Recovery of physiological parameters in gladiolus under water stress. Colture Protette 30: 65-69.
Rodríguez, E. S., Wilhelmi, M. R., Blasco, B., Leyva, R., Romero, L. and Ruiz, J. M. (2012). Antioxidant response resides in the shoot in reciprocal grafts of
drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Sci. 188: 89-96.
Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S. and Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci. Hort. 240: 196-204.
Saleh, S., Liu, G., Liu, M., Ji, Y., He, H. and Gruda, N. (2018). Effect of irrigation on growth, yield, and chemical composition of two green bean cultivars. Hort. 4: 3.   
Santos, M. G. D., Ribeiro, R. V., Oliveira, R. F. D. and Pimentel, C. (2004). Gas exchange and yield response to foliar phosphorus application in Phaseolus vulgaris L. under drought. Braz. J. Plant. Physiol. 16: 171-79.
Saqib, M., Akhtar, J., Abbas, G. and Nasim, M. (2013). Salinity and drought interaction in   wheat (Triticum aestivum L.) is affected by the genotype and plant growth stage. Acta Physiol. Plant. 35: 2761-68.
SAS Institute INC. (2008). Statistical analysis systems computer package. SAS: New York. 
Senjobi, B. A., Ande, O. T., Senjobi, C. T. Adepiti, A. O and Adigun, M. O. (2013). Performance of Abelmoschus esculentus (L) Moench (okra) under various applications of pesticides and fertilizers in an Oxic Paleustalf. Int. J. Plant Soil Sci. 2: 24-40. 
Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52: 551-611.
Shawquat, M., Karim, M. A., Mahmud, A. A., Parveen, S., Bazzaz, M. and Hossain, A. (2015). Plant water relations and proline accumulations in soybean under salt and water stress environment. J. Plant Sci. 5: 272-78.
Singh, B. and Singh, G. (2004). Influence of soil water regime on nutrient mobility and uptake by Dabergia sissoo seedlings. Trop. Ecol. 45: 337-40.
Taylor, M. D., Locascio, S. J. and Alligood, M. R. (2004). Blossom-end incidence of tomatoes as affected by irrigation quantity, calcium source and reduced potassium. Hort. Sci. 39: 1110-15.
Weatherly, P. E. (1969). Ion movement within the plant. In: Rorison, I. H. (editions), Ecological aspects of the mineral nutrition of plants. Blackwell, Oxford. pp: 323-40. 
 

Global Footprints